Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Chem Phys ; 160(15)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38629609

RESUMO

This paper explores the unintentional contamination of Surface-Enhanced Raman Scattering (SERS) substrates by ambient hydrocarbon contaminants and their contribution to SERS spectra. Previous studies have identified amorphous carbon as a potential complicating factor in data analysis in SERS experiments, although its origin has been elusive. Our work showed that ambient hydrocarbon contamination and its decomposition products can be detected by SERS on a gold substrate. We propose that ambient air itself is a source of amorphous carbon contamination on SERS substrates. This understanding is crucial for the correct interpretation of SERS data and highlights the need for careful consideration of potential environmental contaminants in SERS analysis.

2.
Langmuir ; 39(34): 12159-12165, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37581604

RESUMO

Airborne hydrocarbon contamination occurs rapidly on graphitic surfaces and negatively impact many of their material properties, yet much of the molecular details of the contamination remains unknown. We use Kelvin probe force microscopy (KPFM) to study the time evolution of the surface potential of graphite exposed to ambient. After exfoliation in air, the surface potential of graphite is not homogeneous and contains features that are absent in the topography image. In addition, the heterogeneity of the surface potential images increased in the first few days followed by a decrease at longer exposure times. These observations are strong support of slow conformation change, phase separation, and/or dynamic displacement of the adsorbed airborne contaminants.

3.
Langmuir ; 39(12): 4274-4281, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36935562

RESUMO

It is commonly accepted that during conductive atomic force microscopy (CAFM) measurement in ambient, a liquid meniscus can form between the tip and the sample. Such a liquid bridge, normally assumed to be composed of water, is a major factor in analyzing and understanding CAFM results. Here, we show that the adsorption of adventitious hydrocarbons from the air to a surface can greatly affect CAFM data both in imaging mode and in local spectroscopy (current-voltage or I-V curves). We propose a model to explain the phenomena whereby hydrocarbon contaminates contribute to the composition of the liquid bridge between the tip and the sample.

4.
Phys Chem Chem Phys ; 23(40): 23124-23129, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34617082

RESUMO

This paper reports the fabrication and mechanical properties of macroscale graphene fibers (diameters of 10 to 100 µm with lengths upwards of 2 cm) prepared from a single sheet of single-layer graphene grown via chemical vapor deposition (CVD). The breaking strength of these graphene fibers increased with consecutive tensile test measurements on a single fiber, where fiber fragments produced from a prior test exhibited larger breaking strengths. Additionally, we observed an overall reduction of surface folds and wrinkles, and an increase in their alignment parallel to the tensile direction. We propose that a foundation of this property is the plastic deformations within the fiber that accumulate through sequential tensile testing. Through this cyclic method, our best fiber produced a strength of 2.67 GPa with a 1 mm gauge length.

5.
ACS Nano ; 14(10): 13047-13055, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33048526

RESUMO

We demonstrate area-selective atomic layer deposition (ALD) of oxides on DNA nanostructures. Area-selective ALD of Al2O3, TiO2, and HfO2 was successfully achieved on both 2D and 3D DNA nanostructures deposited on a polystyrene (PS) substrate. The resulting DNA-inorganic hybrid structure was used as a hard mask to achieve deep etching of a Si wafer for antireflection applications. ALD is a widely used process in coating and thin film deposition; our work points to a way to pattern oxide materials using DNA templates and to enhance the chemical/physical stability of DNA nanostructures for applications in surface engineering.


Assuntos
Nanoestruturas , DNA , Engenharia , Óxidos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...