Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 51(19): 7723-7731, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35522255

RESUMO

A series of bis(alkyl) complexes {(tBu)C[N(2,6-Me2C6H3)]2}Ln(CH2SiMe3)2(THF)n (Ln = Y, n = 1 (1); Ln = Sc, n = 1 (2)), {2-[Ph2P(O)]C6H4NC(tBu)N(2,6-Me2C6H3)}Sc(CH2SiMe3)2 (3), {2-[Ph2P(NPh)]C6H4NC(tBu)N(2,6-Me2C6H3)}Sc(CH2SiMe3)2 (4) coordinated by bidentate (N,N) and tridentate (N,N,O; N,N,N) amidinate ligands are synthesized using an alkane elimination approach. Yttrium complex 1 demonstrated a half-life of ∼2.5 days at room temperature in benzene-D6 (C6D6) solution, whereas scandium complexes proved to be much more stable (25 d (2), 30 d (3) and 42 d (4)). Complexes 1-4 as a part of ternary catalytic systems 1-4/TB, HNB/AlR3 (AlR3 = AliBu3, AliBu2H; TB = [Ph3C][B(C6F5)4], HNB = [PhNHMe2][B(C6F5)4]) demonstrated high catalytic activity in isoprene polymerization and enable 80%-100% conversion of 1000 equivalents of monomer into polymer at 25 °C within 3-180 min. The isolated polyisoprenes feature predominantly cis-1,4-regularity (69.2%-87.3%) and polydispersities Mw/Mn = 2.26-8.92. Moreover, the binary (2/TB) and ternary (1-4/TB/10 AliBu3) systems initiate 1-heptene polymerization providing 40%-100% conversion of 500 equivalents of monomer in 24 h at 25 °C giving polymer samples with Mn = 1.55-190.2 × 103 and Mw/Mn = 1.55-3.87.

2.
Dalton Trans ; 50(24): 8487-8496, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34047741

RESUMO

We report the synthesis and structures of three luminescent dysprosium(iii) complexes based on fluorinated alkoxide ligands of formulas [Dy(L1)2(THF)4][BPh4]·0.5THF (1), [Dy(L2)2(THF)5][BPh4]·2.5THF (2) and [Dy(L3)2(THF)5][BPh4]·2THF (3) (L1 = (CF3)3CO-, L2 = C6F5C6F4O-, L3 = C6F5C(CH3)O-). Despite the different dysprosium ion geometries (octahedral vs. distorted pentagonal bipyramidal), these systems exhibit a single-molecule magnet (SMM) behavior, but with distinct relaxation dynamics. Moreover, a typical dysprosium-based luminescence is observed for the three complexes, which make them bifunctional magneto-luminescent SMMs. Remarkably, complex 3 exhibits a high anisotropy barrier of 1469 cm-1 and a blocking temperature of 22 K, making it one of the most performant alkoxide-based SMMs with the highest blocking temperature for a luminescent SMM.

3.
Dalton Trans ; 49(34): 11890-11901, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32808617

RESUMO

We report the synthesis, structure and magnetic properties investigations of a series of new dysprosium heteroleptic mono- and dinuclear complexes based on the association of chloride and different diazabutadiene (DAD2R = [2,6-iPr2C6H3N-CR[double bond, length as m-dash]CR-NC6H3iPr2-2,6]; R = H, Me) ligands showing different redox states. While using dianionic DAD2R ligands affords the formation of dichloro-bridged dinuclear complexes [Dy2(DAD2R)(µ-Cl)2(THF)2] (R = H (1), Me (2)), two different mononuclear complexes of general formula [DyCl2(DAD2R)(THF)2] (R = H (3), Me (4)) could be obtained with either a radical monoanionic and a monoanionic DAD2R state, respectively. Remarkably, all the complexes exhibit a slow relaxation of their magnetization where the relaxation dynamics depends on both the nuclearity of the system and the DAD2R redox state.

4.
Dalton Trans ; 48(23): 8317-8326, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31111858

RESUMO

The amine elimination reaction of equimolar amounts of ansa-bis(amidine) C6H4-1,2-{NC(tBu)NH(2,6-iPr2C6H3)}2 (L1H) and [(Me3Si)2N]2Yb(THF)2 affords a bis(amidinate) YbII complex [C6H4-1,2-{NC(tBu)N(2,6-iPr2C6H3)}2]Yb(THF) (1) in 68% yield. Complex 1 features a rather rare η1-amido:η6-arene coordination of both amidinate fragments to the YbII ion, resulting in the formation of a bent bis(arene) structure. Oxidation of 1 by I2 regardless of the molar ratio of reagents (2 : 1 or 1 : 1) leads to the formation of the YbIII species [{(2,6-iPr2C6H3)[double bond, length as m-dash]NC(tBu)NH}-C6H4-1,2-{NC(tBu)N(2,6-iPr2C6H3)}]YbI2(THF)2 (2) in which only one amidinate fragment is coordinated to the ytterbium ion in κ2-N,N'-chelating coordination mode, while the second NCN fragment is protonated in the course of the reaction and is not bound to the metal ion. The outcome of the salt metathesis reaction of LaCl3 with lithium amidinates [C6H4-1,2-{NC(tBu)N(2,6-R2C6H3)}2Li2] (R = Me, iPr) is proven to be strongly affected by the substituent 2,6-R2C6H3 on the amidinate nitrogens. When R = iPr, the salt metathesis reaction occurs smoothly and results in the formation of an ate-chloro-amidinate complex [C6H4-1,2-{NC(tBu)N(2,6-iPr2C6H3)}2]La(µ2-Cl)Li(THF)(µ2-Cl)2Li(THF)2 (3) in which the LaIII ion is coordinated by both amidinate fragments in a "classic"κ2-N,N'-chelating fashion. In the case of R = Me, the reaction requires prolonged heating for completion. Moreover, the salt metathesis reaction is accompanied by the fragmentation of the ligand and affords a trinuclear chloro-amidinate complex [C6H4-1,2-{NC(tBu)N(2,6-Me2C6H3)}2]La{[(tBu)C(N-2,6-Me2C6H3)2]La(THF)}2(µ2-Cl)4(µ3-Cl)2 (4) containing one dianionic ansa-bis(amidinate) and two monoanionic [(tBu)C(N-2,6-Me2C6H3)2] amidinate fragments. DFT calculations are conducted to determine the factor that governs this change in coordination mode and, in particular, the effect of the metal oxidation state.

5.
Dalton Trans ; 45(46): 18572-18584, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27819095

RESUMO

A series of new tridentate amidines 2-[Ph2P[double bond, length as m-dash]X]C6H4NHC(tBu)[double bond, length as m-dash]N(2,6-R2C6H3) (X = O, R = iPr (1); X = S, R = Me (2); X = NPh, R = Me (3); X = N(2,6-Me2C6H3), R = Me (4)) bearing various types of donor Ph2P[double bond, length as m-dash]X groups in a pendant chain was synthesized. Bis(alkyl) complexes {2-[Ph2P[double bond, length as m-dash]X]C6H4NC(tBu)N(2,6-R2C6H3)}Ln(CH2SiMe3)2 (Ln = Y, X = O, R = iPr (5); Ln = Er, X = O, R = iPr (6); Ln = Lu, X = O, R = iPr (7); Ln = Y, X = NPh, R = Me (8); Ln = Lu, X = NPh, R = Me (9); Ln = Lu, X = N(2,6-Me2C6H3), R = Me (10)) were prepared using alkane elimination reactions of 1, 3 and 4 with Ln(CH2SiMe3)3(THF)2 (Ln = Y, Er, Lu) in toluene and were isolated in 45 (5), 62 (6), 56 (7), 65 (8), 60 (9), and 60 (10) % yields respectively. The X-ray diffraction studies showed that complexes 6-8 are solvent free and feature intramolecular coordination of the P[double bond, length as m-dash]X (X = O, NPh) group to the lanthanide ions. The ternary systems 5-10/borate/AlR3 (borate = [PhNHMe2][B(C6F5)4], [Ph3C][B(C6F5)4], AlR3 = AliBu3, AliBu2H; molar ratio = 1/1/10 or 1/1/1, toluene) proved to be active in isoprene polymerization and enable complete conversion of 1000-10 000 equivalents of the monomer into a polymer at 25 °C within 0.5-24 h affording polyisoprenes with polydispersities Mw/Mn = 1.22-3.18. A comparative study of the catalytic performance of the bis(alkyl) complexes coordinated by tridentate amidinate ligands containing different pendant donor groups demonstrated that replacement of the Ph2P[double bond, length as m-dash]O group by Ph2P[double bond, length as m-dash]NPh leads to a switch of stereoselectivity in isoprene polymerization from cis-1,4 (up to 98.5%) to trans-1,4 (up to 84.8%). And conversely introduction of methyl substituents in the 2,6 positions of the phenyl group of the Ph2P[double bond, length as m-dash]NPh fragment allows us to restore the 1,4-cis stereoselectivity of the catalytic systems based on bis(alkyl) complex 10 (up to 86.4%).

6.
Dalton Trans ; 44(37): 16465-74, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26314896

RESUMO

A new tridentate amidine 2-[Ph2P(O)]C6H4NHC(tBu)[double bond, length as m-dash]N(2,6-Me2C6H3) (1) bearing a side chain pendant Ph2P[double bond, length as m-dash]O group was synthesized and proved to be a suitable ligand for coordination to rare-earths ions. Bis(alkyl) complexes {2-[Ph2P(O)]C6H4NC(tBu)N(2,6-Me2C6H3)}Ln(CH2SiMe3)2(THF)n (Ln = Y, n = 1 (3), Ln = Er, n = 1 (4), Ln = Lu, n = 0 (5)) were prepared using alkane elimination reactions of and Ln(CH2SiMe3)3(THF)2 (Ln = Y, Er, Lu) in hexane and were isolated in 50, 70 and 75% yields respectively. The X-ray studies revealed that complexes 2-5 feature intramolecular coordination of P[double bond, length as m-dash]O groups to metal ions. The lutetium complex 5 proved to be rather stable: at 20 °C its half-life time is 1155 h, while for the yttrium analogue the half-life time was found to be 63 h. Complexes 3-5 were evaluated as precatalysts for isoprene polymerization. The systems Ln/borate/AliBu3 (Ln = 3-5, borate = [PhNHMe2][B(C6F5)4], [Ph3C][B(C6F5)4]) turned out to be highly efficient in isoprene polymerization and enable complete conversion of 1000-10,000 equivalents of monomer into polymer at 20 °C within 0.5-2.5 h affording polyisoprenes with a very high content of 1,4-cis units (up to 96.6%) and from narrow (1.49) to moderate (3.54) polydispersities. A comparative study of catalytic performance of the related bis(alkyl) yttrium complexes supported by amidinate ligands of different denticities and structures [tBuC(N-2,6iPr2C6H4)2](-), [tBuC(N-2,6-iPr2C6H4)(N-2-MeOC6H4)](-) and {2-[Ph2P(O)]C6H4NC(tBu)N(2,6-Me2C6H3)}(-) demonstrated that the introduction of a pendant donor group (2-MeOC6H4 or Ph2P(O)) into a side chain of amidinate scaffolds results in a significant increase in catalytic activity. The amidinate ligand bearing a Ph2P(O)-group provides a high isoprene polymerization rate along with excellent control over regio- and stereoselectivities and allows us to obtain polyisoprenes with a reasonable molecular weight distribution.

7.
Inorg Chem ; 53(3): 1537-43, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24446704

RESUMO

Reaction of bisamidine C6H4-1,2-{NC(t-Bu)NH(2,6-Me2C6H3)}2 (1) and [(Me3Si)2N]2Yb(THF)2 (THF = tetrahydrofuran) (toluene; room temperature) in a 1:1 molar ratio afforded a bis(amidinate) Yb(II) complex [C6H4-1,2-{NC(t-Bu)N(2,6-Me2C6H3)}2]Yb(THF) (2) in 65% yield. Complex 2 features unusual κ(1)amide, η(6)-arene coordination of both amidinate fragments to the ytterbium ion, resulting in the formation of a bent bis(arene) structure. Oxidation of 2 by Ph3SnCl (1:1 molar ratio) or (PhCH2S)2 (1:0.5) leads to the Yb(III) species [C6H4-1,2-{NC(t-Bu)N(2,6-Me2C6H3)}2]YbCl(1,2-dimethoxyethane) (3) and {[C6H4-1,2-{NC(t-Bu)N(2,6-Me2C6H3)}2]Yb(µ-SCH2Ph)}2 (4), performing "classic" κ(2)N,N'-chelating coordination mode of ansa bis(amidinate) ligand. By the reduction of 3 with equimolar amount of sodium naphthalide [C10H8(•-)][Na(+)] in THF, complex 2 can be recovered and restored to a bent bis(arene) structure. Complex 3 was also synthesized by the salt metathesis reaction of equimolar amounts of YbCl3 and the dilithium derivative of 1 in THF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...