Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Thyroid ; 34(6): 785-795, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38757582

RESUMO

Background: Stimulation of ventricular hypertrophy and heart rate are two major cardiac effects of thyroid hormone (TH). The aim of this study was to determine in vivo which TH receptor (TR)-α or ß-and which mode of TR action-canonical gene expression or DNA-binding independent noncanonical action-mediate these effects. Methods: We compared global TRα and TRß knockout mice (TRαKO; TRßKO) with wild-type (WT) mice to determine the TR isoform responsible for T3 effects. The relevance of TR DNA binding was studied in mice with a mutation in the DNA-binding domain that selectively abrogates DNA binding and canonical TR action (TRαGS; TRßGS). Hearts were studied with echocardiography at baseline and after 7 weeks of T3 treatment. Gene expression was measured with real-time polymerase chain reaction. Heart rate was recorded with radiotelemetry transmitters for 7 weeks in untreated, hypothyroid, and T3-treated mice. Results: T3 induced ventricular hypertrophy in WT and TRßKO mice, but not in TRαKO mice. Hypertrophy was also induced in TRαGS mice. Thus, hypertrophy is mostly mediated by noncanonical TRα action. Similarly, repression of Mhy7 occurred in WT and TRαGS mice. Basal heart rate was largely dependent on canonical TRα action. But responsiveness to hypothyroidism and T3 treatment as well as expression of pacemaker gene Hcn2 were still preserved in TRαKO mice, demonstrating that TRß could compensate for absence of TRα. Conclusions: T3-induced cardiac hypertrophy could be attributed to noncanonical TRα action, whereas heart rate regulation was mediated by canonical TRα action. TRß could substitute for canonical but not noncanonical TRα action.


Assuntos
Cardiomegalia , Frequência Cardíaca , Camundongos Knockout , Receptores alfa dos Hormônios Tireóideos , Receptores beta dos Hormônios Tireóideos , Tri-Iodotironina , Animais , Masculino , Camundongos , Cardiomegalia/metabolismo , Cardiomegalia/genética , Hipotireoidismo/metabolismo , Hipotireoidismo/genética , Isoformas de Proteínas/metabolismo , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Receptores beta dos Hormônios Tireóideos/genética , Receptores beta dos Hormônios Tireóideos/metabolismo
2.
J Ocul Pharmacol Ther ; 40(1): 78-88, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38252789

RESUMO

Introduction: The hydrogen-bonded networks play a significant role in influencing several physicochemical properties of ofloxacin in artificial tears (ATs), including density, pH, viscosity, and self-diffusion coefficients. The activities of the ofloxacin antibiotic with Ats mixtures are not solely determined by their concentration but are also influenced by the strength of the hydrogen bonding network which highlight the importance of considering factors such as excessive tear production and dry eye conditions when formulating appropriate dosages of ofloxacin antibiotics for eye drops. Objectives: Investigating the physicochemical properties of ofloxacin-ATs mixtures, which serve as a model for understanding the impact of hydrogen bonding on the antimicrobial activity of ofloxacin antibiotic eye drops. Determine the antimicrobial activities of the ofloxacin-Ats mixture with different concentration of ofloxacin. Methods: The ofloxacin-ATs mixtures were analyzed using 1H-NMR, Raman, and UV-Vis spectroscopies, with variation of ofloxacin concentration to study its dissociation kinetics in ATs, mimicking its behavior in human eye tears. The investigation includes comprehensive analysis of 1H-NMR spectral data, self-diffusion coefficients, Raman spectroscopy, UV-Vis spectroscopy, liquid viscosity, and acidity, providing a comprehensive assessment of the physicochemical properties. Results: Analysis of NMR chemical shifts, linewidths, and self-diffusion coefficient curves reveals distinct patterns, with peaks or minima observed around 0.6 ofloxacin mole fraction dissociated in ATs, indicating a strong correlation with the hydrogen bonding network. Additionally, the pH data exhibits a similar trend to viscosity, suggesting an influence of the hydrogen bonding network on protonic ion concentrations. Antibacterial activity of the ofloxacin-ATs mixtures is evaluated through growth rate analysis against Salmonella typhimurium, considering varying concentrations with mole fractions of 0.1, 0.4, 0.6, 0.8, and 0.9. Conclusions: The antibiotic-ATs mixture with a mole fraction of 0.6 ofloxacin exhibited lower activity compared to mixtures with mole fractions of 0.1 and 0.4, despite its lower concentration. The activities of the mixtures are not solely dependent on concentration but are also influenced by the strength of the hydrogen bonding network. These findings emphasize the importance of considering tear over-secretion and dry eye problems when designing appropriate doses of ofloxacin antibiotics for eye drop formulations.


Assuntos
Antibacterianos , Síndromes do Olho Seco , Humanos , Antibacterianos/farmacologia , Ofloxacino/farmacologia , Ofloxacino/análise , Lubrificantes Oftálmicos , Espectroscopia de Prótons por Ressonância Magnética , Lágrimas/química
3.
Trends Biotechnol ; 42(2): 212-227, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37806897

RESUMO

Cardiac multiscale bioimaging is an emerging field that aims to provide a comprehensive understanding of the heart and its functions at various levels, from the molecular to the entire organ. It combines both physiologically and clinically relevant dimensions: from nano- and micrometer resolution imaging based on vibrational spectroscopy and high-resolution microscopy to assess molecular processes in cardiac cells and myocardial tissue, to mesoscale structural investigations to improve the understanding of cardiac (patho)physiology. Tailored super-resolution deep microscopy with advanced proteomic methods and hands-on experience are thus strategically combined to improve the quality of cardiovascular research and support future medical decision-making by gaining additional biomolecular information for translational and diagnostic applications.


Assuntos
Coração , Proteômica , Coração/diagnóstico por imagem
4.
Int J Mol Sci ; 23(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35628155

RESUMO

Vibrational spectroscopy can detect characteristic biomolecular signatures and thus has the potential to support diagnostics. Fabry disease (FD) is a lipid disorder disease that leads to accumulations of globotriaosylceramide in different organs, including the heart, which is particularly critical for the patient's prognosis. Effective treatment options are available if initiated at early disease stages, but many patients are late- or under-diagnosed. Since Coherent anti-Stokes Raman (CARS) imaging has a high sensitivity for lipid/protein shifts, we applied CARS as a diagnostic tool to assess cardiac FD manifestation in an FD mouse model. CARS measurements combined with multivariate data analysis, including image preprocessing followed by image clustering and data-driven modeling, allowed for differentiation between FD and control groups. Indeed, CARS identified shifts of lipid/protein content between the two groups in cardiac tissue visually and by subsequent automated bioinformatic discrimination with a mean sensitivity of 90-96%. Of note, this genotype differentiation was successful at a very early time point during disease development when only kidneys are visibly affected by globotriaosylceramide depositions. Altogether, the sensitivity of CARS combined with multivariate analysis allows reliable diagnostic support of early FD organ manifestation and may thus improve diagnosis, prognosis, and possibly therapeutic monitoring of FD.


Assuntos
Doença de Fabry , Animais , Diagnóstico Precoce , Doença de Fabry/diagnóstico por imagem , Humanos , Lipídeos , Camundongos , Microscopia/métodos , Análise Espectral Raman/métodos
5.
Front Cardiovasc Med ; 8: 683522, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395557

RESUMO

Purpose: Thyroid hormones (TH) play a central role for cardiac function. TH influence heart rate and cardiac contractility, and altered thyroid function is associated with increased cardiovascular morbidity and mortality. The precise role of TH in onset and progression of heart failure still requires clarification. Methods: Chronic left ventricular pressure overload was induced in mouse hearts by transverse aortic constriction (TAC). One week after TAC, alteration of TH status was induced and the impact on cardiac disease progression was studied longitudinally over 4 weeks in mice with hypo- or hyperthyroidism and was compared to euthyroid TAC controls. Serial assessment was performed for heart function (2D M-mode echocardiography), heart morphology (weight, fibrosis, and cardiomyocyte cross-sectional area), and molecular changes in heart tissues (TH target gene expression, apoptosis, and mTOR activation) at 2 and 4 weeks. Results: In diseased heart, subsequent TH restriction stopped progression of maladaptive cardiac hypertrophy and improved cardiac function. In contrast and compared to euthyroid TAC controls, increased TH availability after TAC propelled maladaptive cardiac growth and development of heart failure. This was accompanied by a rise in cardiomyocyte apoptosis and mTOR pathway activation. Conclusion: This study shows, for the first time, a protective effect of TH deprivation against progression of pathological cardiac hypertrophy and development of congestive heart failure in mice with left ventricular pressure overload. Whether this also applies to the human situation needs to be determined in clinical studies and would infer a critical re-thinking of management of TH status in patients with hypertensive heart disease.

6.
ACS Biomater Sci Eng ; 5(11): 6063-6071, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33405660

RESUMO

Nanocontainers based on solid materials have great potential for drug delivery applications. However, since nanocontainer-mediated delivery can alter the drug internalization pathways and metabolism, it is important to find out what are the mechanisms of cancer cell death induced by nanocontainers and, moreover, is it possible to regulate them. Here, we report on the detailed investigation of the internalization kinetics and intracellular spatial distribution of porous silicon nanoparticles (PSi NPs) loaded with doxorubicin (DOX) and response of cancer cells to treatment with DOX-PSi NPs as well as studies of nanocontainer biodegradation by applying various microscopy methods, Raman microspectroscopy and biological experiments with cancer cells of different etiology. The obtained results revealed the absence of toxicity of unloaded PSi NPs to cancer cells up to a concentration of 700 µg/mL during the prolonged incubation time. Thus, given the fact that the nanocontainers themselves are not toxic, it is easy to adjust the dose of the drug that they deliver to the cells. It is shown, that the treatment with DOX-loaded PSi NPs more efficiently eliminates cancer cells in comparison with the free DOX. At the same time, the obtained results demonstrate the possibility of regulating the initiation of apoptosis or necrosis in tumor cells after treatment with different concentrations of DOX-PSi NPs, as revealed by the analysis of the caspase-3 processing, the accumulation of sub-G1 cell fraction, and morphological changes determined by electron and light microscopy. The obtained results are important for future applications of porous silicon nanocontainers in drug delivery for apoptotic pathway-targeted cancer therapy.

7.
Int J Mol Sci ; 17(9)2016 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-27626408

RESUMO

New approaches for visualisation of silicon nanoparticles (SiNPs) in cancer cells are realised by means of the linear and nonlinear optics in vitro. Aqueous colloidal solutions of SiNPs with sizes of about 10-40 nm obtained by ultrasound grinding of silicon nanowires were introduced into breast cancer cells (MCF-7 cell line). Further, the time-varying nanoparticles enclosed in cell structures were visualised by high-resolution structured illumination microscopy (HR-SIM) and micro-Raman spectroscopy. Additionally, the nonlinear optical methods of two-photon excited fluorescence (TPEF) and coherent anti-Stokes Raman scattering (CARS) with infrared laser excitation were applied to study the localisation of SiNPs in cells. Advantages of the nonlinear methods, such as rapid imaging, which prevents cells from overheating and larger penetration depth compared to the single-photon excited HR-SIM, are discussed. The obtained results reveal new perspectives of the multimodal visualisation and precise detection of the uptake of biodegradable non-toxic SiNPs by cancer cells and they are discussed in view of future applications for the optical diagnostics of cancer tumours.


Assuntos
Imagem Multimodal/métodos , Nanofios/ultraestrutura , Neoplasias/diagnóstico , Silício/química , Humanos , Células MCF-7 , Microscopia , Imagem Óptica/métodos , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos
8.
Nanomedicine ; 12(7): 1931-1940, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27085902

RESUMO

In-vitro Raman micro-spectroscopy was used for diagnostics of the processes of uptake and biodegradation of porous silicon nanoparticles (SiNPs) in breast cancer cells (MCF-7 cell line). Two types of nanoparticles, with and without photoluminescence in the visible spectral range, were investigated. The spatial distribution of photoluminescent SiNPs within the cells obtained by Raman imaging was verified by high-resolution structured-illumination optical microscopy. Nearly complete biodegradation of SiNPs inside the living cells was observed after 13days of the incubation. The results reveal new prospects of multi-modal visualization of SiNPs inside cancer cells for theranostic applications.


Assuntos
Nanopartículas , Silício/farmacocinética , Humanos , Células MCF-7 , Imagem Óptica/métodos , Porosidade , Dióxido de Silício , Análise Espectral Raman
9.
PLoS One ; 10(7): e0132174, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26147644

RESUMO

The microscope image of a thick fluorescent sample taken at a given focal plane is plagued by out-of-focus fluorescence and diffraction limited resolution. In this work, we show that a single slice of Structured Illumination Microscopy (two or three beam SIM) data can be processed to provide an image exhibiting tight sectioning and high transverse resolution. Our reconstruction algorithm is adapted from the blind-SIM technique which requires very little knowledge of the illumination patterns. It is thus able to deal with illumination distortions induced by the sample or illumination optics. We named this new algorithm thick slice blind-SIM because it models a three-dimensional sample even though only a single two-dimensional plane of focus was measured.


Assuntos
Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Actinas/análise , Algoritmos , Artefatos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral/ultraestrutura , Feminino , Humanos , Iluminação , Microscopia de Fluorescência/instrumentação , Paxilina/análise
10.
Invest Ophthalmol Vis Sci ; 56(5): 3242-52, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25758814

RESUMO

PURPOSE: Lipofuscin (LF) and melanolipofuscin (MLF) of the retinal pigment epithelium (RPE) are the principal sources of autofluorescence (AF) signals in clinical fundus-AF imaging. Few details about the subcellular distribution of AF organelles in AMD are available. We describe the impact of aging and AMD on RPE morphology revealed by the distribution of AF LF/MLF granules and actin cytoskeleton in human tissues. METHODS: Thirty-five RPE-Bruch's membrane flatmounts from 35 donors were prepared (postmortem: ≤4 hours). Ex vivo fundus examination at the time of accession revealed either absence of chorioretinal pathologies (10 tissues; mean age: 83.0 ± 2.6 years) or stages of AMD (25 tissues; 85.0 ± 5.8 years): early AMD, geographic atrophy, and late exudative AMD. Retinal pigment epithelium cytoskeleton was labeled with AlexaFluor647-Phalloidin. Tissues were imaged on a spinning-disk fluorescence microscope and a high-resolution structured illumination microscope. RESULTS: Age-related macular degeneration impacts individual RPE cells by (1) lipofuscin redistribution by (i) degranulation (granule-by-granule loss) and/or (ii) aggregation and apparent shedding into the extracellular space; (2) enlarged RPE cell area and conversion from convex to irregular and sometimes concave polygons; and (3) cytoskeleton derangement including separations and breaks around subretinal deposits, thickening, and stress fibers. CONCLUSIONS: We report an extensive and systematic en face analysis of LF/MLF-AF in AMD eyes. Redistribution and loss of AF granules are among the earliest AMD changes and could reduce fundus AF signal attributable to RPE at these locations. Data can enhance the interpretation of clinical fundus-AF and provide a basis for future quantitative studies.


Assuntos
Lipofuscina/metabolismo , Degeneração Macular/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Lâmina Basilar da Corioide/metabolismo , Lâmina Basilar da Corioide/patologia , Citoesqueleto , Feminino , Humanos , Degeneração Macular/patologia , Microscopia Confocal , Epitélio Pigmentado da Retina/patologia , Pigmentos da Retina/metabolismo , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...