Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Behav ; 215: 112776, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31838149

RESUMO

Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by a single genetic mutation in the Fmr1 gene, serving as the largest genetic cause of intellectual disability. Trinucleotide expansion mutations in Fmr1 result in silencing and hypermethylation of the gene, preventing synthesis of the RNA binding protein Fragile X mental retardation protein which functions as a translational repressor. Abnormal immune responses have been demonstrated to play a role in FXS pathophysiology, however, whether these alterations impact how those with FXS respond to an immune insult behaviorally is not entirely known. In the current study, we examine how Fmr1 knockout (KO) and wild type (WT) mice respond to the innate immune stimulus lipopolysaccharide (LPS), both on a molecular and behavioral level, to determine if Fmr1 mutations impact the normal physiological response to an immune insult. In response to LPS, Fmr1 KO mice had elevated hippocampal IL-1ß and IL-6 mRNA levels 4 h post-treatment compared to WT mice, with no differences detected in any cytokines at baseline or between genotypes 24 h post-LPS administration. Fmr1 KO mice also had upregulated hippocampal BDNF gene expression 4 h post-treatment compared to WT mice, which was not dependent on LPS administration. There were no differences in hippocampal protein expression between genotypes in microglia (Iba1) or astrocyte (GFAP) reactivity. Further, both genotypes displayed the typical sickness response following LPS stimulation, demonstrated by a significant reduction in food burrowed by LPS-treated mice in a burrowing task. Additional investigation is critical to determine if the transient increases in cytokine expression could lead to long-term changes in downstream molecular signaling in FXS.


Assuntos
Citocinas/biossíntese , Síndrome do Cromossomo X Frágil/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos , Adjuvantes Imunológicos/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/patologia , Síndrome do Cromossomo X Frágil/psicologia , Imunidade Inata/efeitos dos fármacos , Camundongos , Camundongos Knockout , Mutação/genética
2.
Epilepsy Behav ; 95: 26-33, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31022661

RESUMO

There is increasing evidence that seizures during early development can impact ultrasonic vocalizations (USVs) emitted from neonatal mice. However, most of the effects of early-life seizures have been reported using chemoconvulsants that produce continuous seizures (status epilepticus). In the present study, we evaluated the impact of different seizure frequency loads during early-life vocalization development in C57BL/6J male and female mice. For the high seizure load (HSL) paradigm, we administered 3 flurothyl seizures to mice on postnatal day (PD) 7 through PD11, and recorded USVs on PD12. We found that the induction of seizures across PD7-11 resulted in increased average duration (P < 0.05) and cumulative duration (P < 0.05) of USVs across both sexes. Call-type analyses indicated several call-type changes, including reduced production of complex call-types from males' HSL condition. For the low seizure load (LSL) paradigm, we induced 3 flurothyl seizures only on PD10 and recorded USVs on PD12. We found no change in any spectral or temporal features of USVs. However, call-type production analyses indicated that both male and female animals from the LSL paradigm also produced changes in call-types. This study provides evidence that the magnitude of communication impairment following seizures is significantly impacted by seizure frequency load early in development.


Assuntos
Crescimento e Desenvolvimento , Convulsões/psicologia , Ondas Ultrassônicas , Vocalização Animal , Animais , Animais Recém-Nascidos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Convulsões/induzido quimicamente , Convulsões/fisiopatologia , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...