Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Hear Res ; 439: 108879, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37826916

RESUMO

We demonstrate how the structure of auditory cortex can be investigated by combining computational modelling with advanced optimisation methods. We optimise a well-established auditory cortex model by means of an evolutionary algorithm. The model describes auditory cortex in terms of multiple core, belt, and parabelt fields. The optimisation process finds the optimum connections between individual fields of auditory cortex so that the model is able to reproduce experimental magnetoencephalographic (MEG) data. In the current study, this data comprised the auditory event-related fields (ERFs) recorded from a human subject in an MEG experiment where the stimulus-onset interval between consecutive tones was varied. The quality of the match between synthesised and experimental waveforms was 98%. The results suggest that neural activity caused by feedback connections plays a particularly important role in shaping ERF morphology. Further, ERFs reflect activity of the entire auditory cortex, and response adaptation due to stimulus repetition emerges from a complete reorganisation of AC dynamics rather than a reduction of activity in discrete sources. Our findings constitute the first stage in establishing a new non-invasive method for uncovering the organisation of the human auditory cortex.


Assuntos
Córtex Auditivo , Animais , Humanos , Córtex Auditivo/fisiologia , Mapeamento Encefálico , Magnetoencefalografia , Macaca mulatta/fisiologia , Simulação por Computador , Potenciais Evocados Auditivos , Percepção Auditiva/fisiologia , Estimulação Acústica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...