Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Expert Opin Drug Deliv ; : 1-12, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963225

RESUMO

INTRODUCTION: Neurometabolic disorders remain challenging to treat, largely due to the limited availability of drugs that can cross the blood-brain barrier (BBB) and effectively target brain impairment. Key reasons for inadequate treatment include a lack of coordinated knowledge, few studies on BBB status in these diseases, and poorly designed therapies. AREAS COVERED: This paper provides an overview of current research on neurometabolic disorders and therapeutic options, focusing on the treatment of neurological involvement. It highlights the limitations of existing therapies, describes innovative protocols recently developed, and explores new opportunities for therapy design and testing, some of which are already under investigation. The goal is to guide researchers toward innovative and potentially more effective treatments. EXPERT OPINION: Advancing research on neurometabolic diseases is crucial for designing effective treatment strategies. The field suffers from a lack of collaboration, and a strong collective effort is needed to enhance synergy, increase knowledge, and develop a new therapeutic paradigm for neurometabolic disorders.

2.
Sci Rep ; 13(1): 10289, 2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37357221

RESUMO

Multiple complex intracellular cascades contributing to Hunter syndrome (mucopolysaccharidosis type II) pathogenesis have been recognized and documented in the past years. However, the hierarchy of early cellular abnormalities leading to irreversible neuronal damage is far from being completely understood. To tackle this issue, we have generated two novel iduronate-2-sulfatase (IDS) loss of function human neuronal cell lines by means of genome editing. We show that both neuronal cell lines exhibit no enzymatic activity and increased GAG storage despite a completely different genotype. At a cellular level, they display reduced differentiation, significantly decreased LAMP1 and RAB7 protein levels, impaired lysosomal acidification and increased lipid storage. Moreover, one of the two clones is characterized by a marked decrease of the autophagic marker p62, while none of the two mutants exhibit marked oxidative stress and mitochondrial morphological changes. Based on our preliminary findings, we hypothesize that neuronal differentiation might be significantly affected by IDS functional impairment.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Humanos , Ácido Idurônico , Sistemas CRISPR-Cas , Iduronato Sulfatase/genética , Iduronato Sulfatase/metabolismo , Mucopolissacaridose II/genética , Linhagem Celular
3.
Biomolecules ; 13(3)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36979466

RESUMO

Impaired glycosaminoglycans (GAGs) catabolism may lead to a cluster of rare metabolic and genetic disorders called mucopolysaccharidoses (MPSs). Each subtype is caused by the deficiency of one of the lysosomal hydrolases normally degrading GAGs. Affected tissues accumulate undegraded GAGs in cell lysosomes and in the extracellular matrix, thus leading to the MPS complex clinical phenotype. Although each MPS may present with recognizable signs and symptoms, these may often overlap between subtypes, rendering the diagnosis difficult and delayed. Here, we performed an exploratory analysis to develop a model that predicts MPS subtypes based on UHPLC-MS/MS measurement of a urine free GAG profile (or GAGome). We analyzed the GAGome of 78 subjects (38 MPS, 37 healthy and 3 with other MPS symptom-overlapping disorders) using a standardized kit in a central-blinded laboratory. We observed several MPS subtype-specific GAGome changes. We developed a multivariable penalized Lasso logistic regression model that attained 91.2% balanced accuracy to distinguish MPS type II vs. III vs. any other subtype vs. not MPS, with sensitivity and specificity ranging from 73.3% to 91.7% and from 98.4% to 100%, depending on the predicted subtype. In conclusion, the urine GAGome was revealed to be useful in accurately discriminating the different MPS subtypes with a single UHPLC-MS/MS run and could serve as a reliable diagnostic test for a more rapid MPS biochemical diagnosis.


Assuntos
Glicosaminoglicanos , Mucopolissacaridoses , Humanos , Espectrometria de Massas em Tandem , Diagnóstico Diferencial , Mucopolissacaridoses/diagnóstico , Mucopolissacaridoses/genética , Mucopolissacaridoses/metabolismo , Hidrolases/genética
4.
J Mol Med (Berl) ; 100(8): 1169-1179, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35816218

RESUMO

Mucopolysaccharidosis type II (MPS II) is a neurometabolic disorder, due to the deficit of the lysosomal hydrolase iduronate 2-sulfatase (IDS). This leads to a severe clinical condition caused by a multi-organ accumulation of the glycosaminoglycans (GAGs/GAG) heparan- and dermatan-sulfate, whose elevated levels can be detected in body fluids. Since 2006, enzyme replacement therapy (ERT) has been clinically applied, showing efficacy in some peripheral districts. In addition to clinical monitoring, GAG dosage has been commonly used to evaluate ERT efficacy. However, a strict long-term monitoring of GAG content and composition in body fluids has been rarely performed. Here, we report the characterization of plasma and urine GAGs in Ids knock-out (Ids-ko) compared to wild-type (WT) mice, and their changes along a 24-week follow-up, with and without ERT. The concentration of heparan-sulfate (HS), chondroitin-sulfate (CS), and dermatan-sulfate (DS), and of the non-sulfated hyaluronic acid (HA), together with their differentially sulfated species, was quantified by capillary electrophoresis with laser-induced fluorescence. In untreated Ids-ko mice, HS and CS + DS were noticeably increased at all time points, while during ERT follow-up, a substantial decrease was evidenced for HS and, to a minor extent, for CS + DS. Moreover, several structural parameters were altered in untreated ko mice and reduced after ERT, however without reaching physiological values. Among these, disaccharide B and HS 2s disaccharide showed to be the most interesting candidates as biomarkers for MPS II. GAG chemical signature here defined provides potential biomarkers useful for an early diagnosis of MPS II, a more accurate follow-up of ERT, and efficacy evaluations of newly proposed therapies. KEY MESSAGES : Plasmatic and urinary GAGs are useful markers for MPS II early diagnosis and prognosis. CE-LIF allows GAG structural analysis and the quantification of 17 different disaccharides. Most GAG species increase and many structural features are altered in MPS II mouse model. GAG alterations tend to restore to wild-type levels following ERT administration. CS+DS/HS ratio, % 2,4dis CS+DS, and % HS 2s are potential markers for MPS II pathology and ERT efficacy.


Assuntos
Líquidos Corporais , Mucopolissacaridose II , Animais , Biomarcadores , Líquidos Corporais/química , Dermatan Sulfato/uso terapêutico , Dissacarídeos/análise , Dissacarídeos/uso terapêutico , Modelos Animais de Doenças , Terapia de Reposição de Enzimas , Glicosaminoglicanos , Heparitina Sulfato/uso terapêutico , Camundongos , Camundongos Knockout , Mucopolissacaridose II/diagnóstico , Mucopolissacaridose II/tratamento farmacológico
5.
Stem Cell Res ; 63: 102846, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35759972

RESUMO

Mucopolysaccharidosis type II (Hunter Syndrome) is a rare X-linked inherited lysosomal storage disorder presenting a wide genetic heterogeneity. It is due to pathogenic variants in the IDS gene, causing the deficit of the lysosomal hydrolase iduronate 2-sulfatase, degrading the glycosaminoglycans (GAGs) heparan- and dermatan-sulfate. Based on the presence/absence of neurocognitive signs, commonly two forms are recognized, the severe and the attenuate ones. Here we describe a line of induced pluripotent stem cells, generated from dermal fibroblasts, carrying the mutation c.479C>T, and obtained from a patient showing an attenuated phenotype. The line will be useful to study the disease neuropathogenesis.


Assuntos
Iduronato Sulfatase , Células-Tronco Pluripotentes Induzidas , Mucopolissacaridose II , Glicosaminoglicanos , Humanos , Iduronato Sulfatase/genética , Ácido Idurônico , Células-Tronco Pluripotentes Induzidas/patologia , Mucopolissacaridose II/genética , Mucopolissacaridose II/patologia , Fenótipo
6.
Orphanet J Rare Dis ; 17(1): 251, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768874

RESUMO

BACKGROUND: Mucopolysaccharidoses (MPSs) are a group of lysosomal storage disorders caused by the deficit of lysosomal hydrolases involved in the degradation of glycosaminoglycans (GAGs). The course is chronic and progressive, with multisystemic involvement that often leads to cardiovascular disease. We describe the overall incidence and type of cardiac damage in a cohort of Italian MPS patients, and their progression over time, also with reference to treatment efficacy in patients under Enzyme Replacement Therapy (ERT). Moreover, we report a possible association between genetic variants and cardiac phenotype in homozygous and hemizygous patients to understand whether a more aggressive clinical phenotype would predict a greater cardiac damage. RESULTS: Our findings confirm that cardiac involvement is very common, already at diagnosis, in MPS VI (85.7% of our cohort), and in MPS II (68% of our cohort) followed by MPS I subjects (55% of our cohort). The most frequent heart defect observed in each MPS and at any time-point of evaluation was mitral insufficiency; 37% of our patients had mitral insufficiency already at diagnosis, and 60% at post-ERT follow-up. After at least six years of treatment, we observed in some cases (including 6 MPS II, 2 MPS IV and 2 MPS VI) a total regression or improvement of some signs of the cardiac pathology, including some valve defects, though excluding aortic insufficiency, the only valvulopathy for which no regression was found despite ERT. The general clinical phenotype proved not to be strictly correlated with the cardiac one, in fact in some cases patients with an attenuated phenotype developed more severe heart damage than patients with severe phenotype. CONCLUSIONS: In conclusion, our analysis confirms the wide presence of cardiopathies, at different extent, in the MPS population. Since cardiac pathology is the main cause of death in many MPS subtypes, it is necessary to raise awareness among cardiologists about early cardiac morpho-structural abnormalities. The encouraging data regarding the long-term effects of ERT, also on heart damage, underlines the importance of an early diagnosis and timely start of ERT.


Assuntos
Traumatismos Cardíacos , Insuficiência da Valva Mitral , Mucopolissacaridoses , Mucopolissacaridose II , Mucopolissacaridose VI , Terapia de Reposição de Enzimas , Traumatismos Cardíacos/tratamento farmacológico , Humanos , Incidência , Insuficiência da Valva Mitral/tratamento farmacológico , Mucopolissacaridoses/tratamento farmacológico , Mucopolissacaridose II/tratamento farmacológico , Mucopolissacaridose VI/tratamento farmacológico
7.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34948256

RESUMO

Mucopolysaccharidosis type VI, or Maroteaux-Lamy syndrome, is a rare, autosomal recessive genetic disease, mainly affecting the pediatric age group. The disease is due to pathogenic variants of the ARSB gene, coding for the lysosomal hydrolase N-acetylgalactosamine 4-sulfatase (arylsulfatase B, ASB). The enzyme deficit causes a pathological accumulation of the undegraded glycosaminoglycans dermatan-sulphate and chondroitin-sulphate, natural substrates of ASB activity. Intracellular and extracellular deposits progressively take to a pathological scenario, often severe, involving most organ-systems and generally starting from the osteoarticular apparatus. Neurocognitive and behavioral abilities, commonly described as maintained, have been actually investigated by few studies. The disease, first described in 1963, has a reported prevalence between 0.36 and 1.3 per 100,000 live births across the continents. With this paper, we wish to contribute an updated overview of the disease from the clinical, diagnostic, and therapeutic sides. The numerous in vitro and in vivo preclinical studies conducted in the last 10-15 years to dissect the disease pathogenesis, the efficacy of the available therapeutic treatment (enzyme replacement therapy), as well as new therapies under study are here described. This review also highlights the need to identify new disease biomarkers, potentially speeding up the diagnostic process and the monitoring of therapeutic efficacy.


Assuntos
Mucopolissacaridose VI/genética , Mucopolissacaridose VI/fisiopatologia , Sulfatos de Condroitina/uso terapêutico , Terapia de Reposição de Enzimas , Glicosaminoglicanos/uso terapêutico , Humanos , Mucopolissacaridose VI/terapia , N-Acetilgalactosamina-4-Sulfatase/genética
8.
Hum Mutat ; 42(11): 1384-1398, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34387910

RESUMO

Mucopolysaccharidosis IVA (MPS IVA, Morquio A syndrome) is a rare autosomal recessive lysosomal storage disorder caused by mutations in the N-acetylgalactosamine-6-sulfatase (GALNS) gene. We collected, analyzed, and uniformly summarized all published GALNS gene variants, thus updating the previous mutation review (published in 2014). In addition, new variants were communicated by seven reference laboratories in Europe, the Middle East, Latin America, Asia, and the United States. All data were analyzed to determine common alleles, geographic distribution, level of homozygosity, and genotype-phenotype correlation. Moreover, variants were classified according to their pathogenicity as suggested by ACMG. Including those previously published, we assembled 446 unique variants, among which 68 were novel, from 1190 subjects (including newborn screening positive subjects). Variants' distribution was missense (65.0%), followed by nonsense (8.1%), splicing (7.2%), small frameshift deletions(del)/insertions(ins) (7.0%), intronic (4.0%), and large del/ins and complex rearrangements (3.8%). Half (50.4%) of the subjects were homozygous, 37.1% were compound heterozygous, and 10.7% had only one variant detected. The novel variants underwent in silico analysis to evaluate their pathogenicity. All variants were submitted to ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) to make them publicly available. Mutation updates are essential for the correct molecular diagnoses, genetic counseling, prenatal and preimplantation diagnosis, and disease management.


Assuntos
Condroitina Sulfatases/genética , Mucopolissacaridose IV/genética , Mutação , Estudos de Associação Genética , Humanos
9.
Biomedicines ; 9(3)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33800050

RESUMO

Lysosomal storage disorders (LSDs) represent a complex and heterogeneous group of rare genetic diseases due to mutations in genes coding for lysosomal enzymes, membrane proteins or transporters. This leads to the accumulation of undegraded materials within lysosomes and a broad range of severe clinical features, often including the impairment of central nervous system (CNS). When available, enzyme replacement therapy slows the disease progression although it is not curative; also, most recombinant enzymes cannot cross the blood-brain barrier, leaving the CNS untreated. The inefficient degradative capability of the lysosomes has a negative impact on the flux through the endolysosomal and autophagic pathways; therefore, dysregulation of these pathways is increasingly emerging as a relevant disease mechanism in LSDs. In the last twenty years, different LSD Drosophila models have been generated, mainly for diseases presenting with neurological involvement. The fruit fly provides a large selection of tools to investigate lysosomes, autophagy and endocytic pathways in vivo, as well as to analyse neuronal and glial cells. The possibility to use Drosophila in drug repurposing and discovery makes it an attractive model for LSDs lacking effective therapies. Here, ee describe the major cellular pathways implicated in LSDs pathogenesis, the approaches available for their study and the Drosophila models developed for these diseases. Finally, we highlight a possible use of LSDs Drosophila models for drug screening studies.

10.
Cells ; 11(1)2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35011691

RESUMO

Deficit of the IDUA (α-L-iduronidase) enzyme causes the lysosomal storage disorder mucopolysaccharidosis type I (MPS I), a rare pediatric neurometabolic disease, due to pathological variants in the IDUA gene and is characterized by the accumulation of the undegraded mucopolysaccharides heparan sulfate and dermatan sulfate into lysosomes, with secondary cellular consequences that are still mostly unclarified. Here, we report a new fruit fly RNAi-mediated knockdown model of a IDUA homolog (D-idua) displaying a phenotype mimicking some typical molecular features of Lysosomal Storage Disorders (LSD). In this study, we showed that D-idua is a vital gene in Drosophila and that ubiquitous reduction of its expression leads to lethality during the pupal stage, when the precise degradation/synthesis of macromolecules, together with a functional autophagic pathway, are indispensable for the correct development to the adult stage. Tissue-specific analysis of the D-idua model showed an increase in the number and size of lysosomes in the brain and muscle. Moreover, the incorrect acidification of lysosomes led to dysfunctional lysosome-autophagosome fusion and the consequent block of autophagy flux. A concomitant metabolic drift of glycolysis and lipogenesis pathways was observed. After starvation, D-idua larvae showed a quite complete rescue of both autophagy/lysosome phenotypes and metabolic alterations. Metabolism and autophagy are strictly interconnected vital processes that contribute to maintain homeostatic control of energy balance, and little is known about this regulation in LSDs. Our results provide new starting points for future investigations on the disease's pathogenic mechanisms and possible pharmacological manipulations.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Mucopolissacaridose I/enzimologia , Mucopolissacaridose I/patologia , Sequência de Aminoácidos , Animais , Autofagossomos/metabolismo , Autofagia , Modelos Animais de Doenças , Regulação para Baixo/genética , Proteínas de Drosophila/química , Drosophila melanogaster/genética , Genes Essenciais , Glicólise , Lipogênese , Locomoção , Longevidade , Lisossomos/metabolismo , Músculos/metabolismo , Especificidade de Órgãos , Fenótipo , Interferência de RNA
11.
Int J Mol Sci ; 21(4)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32070051

RESUMO

Mucopolysaccharidosis type II (MPS II, Hunter syndrome) was first described by Dr. Charles Hunter in 1917. Since then, about one hundred years have passed and Hunter syndrome, although at first neglected for a few decades and afterwards mistaken for a long time for the similar disorder Hurler syndrome, has been clearly distinguished as a specific disease since 1978, when the distinct genetic causes of the two disorders were finally identified. MPS II is a rare genetic disorder, recently described as presenting an incidence rate ranging from 0.38 to 1.09 per 100,000 live male births, and it is the only X-linked-inherited mucopolysaccharidosis. The complex disease is due to a deficit of the lysosomal hydrolase iduronate 2-sulphatase, which is a crucial enzyme in the stepwise degradation of heparan and dermatan sulphate. This contributes to a heavy clinical phenotype involving most organ-systems, including the brain, in at least two-thirds of cases. In this review, we will summarize the history of the disease during this century through clinical and laboratory evaluations that allowed its definition, its correct diagnosis, a partial comprehension of its pathogenesis, and the proposition of therapeutic protocols. We will also highlight the main open issues related to the possible inclusion of MPS II in newborn screenings, the comprehension of brain pathogenesis, and treatment of the neurological compartment.


Assuntos
Genes Ligados ao Cromossomo X/genética , Iduronato Sulfatase/genética , Mucopolissacaridose II/genética , Mucopolissacaridose II/terapia , Encéfalo/patologia , Humanos , Masculino , Mucopolissacaridose II/diagnóstico , Mucopolissacaridose II/patologia , Fenótipo
12.
J Mol Diagn ; 22(4): 488-502, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32036093

RESUMO

Lysosomal storage disorders (LSDs) are monogenic diseases, due to accumulation of specific undegraded substrates into lysosomes. LSD diagnosis could take several years because of both poor knowledge of these diseases and shared clinical features. The diagnostic approach includes clinical evaluations, biochemical tests, and genetic analysis of the suspected gene. In this study, we evaluated an LSD targeted sequencing panel as a tool capable to potentially reverse this classic diagnostic route. The panel includes 50 LSD genes and 230 intronic sequences conserved among 33 placental mammals. For the validation phase, 56 positive controls, 13 biochemically diagnosed patients, and nine undiagnosed patients were analyzed. Disease-causing variants were identified in 66% of the positive control alleles and in 62% of the biochemically diagnosed patients. Three undiagnosed patients were diagnosed. Eight patients undiagnosed by the panel were analyzed by whole exome sequencing: for two of them, the disease-causing variants were identified. Five patients, undiagnosed by both panel and exome analyses, were investigated through array comparative genomic hybridization: one of them was diagnosed. Conserved intronic fragment analysis, performed in cases unresolved by the first-level analysis, evidenced no candidate intronic variants. Targeted sequencing has low sequencing costs and short sequencing time. However, a coverage >60× to 80× must be ensured and/or Sanger validation should be performed. Moreover, it must be supported by a thorough clinical phenotyping.


Assuntos
Predisposição Genética para Doença , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Doenças por Armazenamento dos Lisossomos/diagnóstico , Doenças por Armazenamento dos Lisossomos/genética , Alelos , Biomarcadores , Estudos de Casos e Controles , Hibridização Genômica Comparativa , Feminino , Estudos de Associação Genética , Variação Genética , Genômica/métodos , Humanos , Masculino , Mutação , Fenótipo , Análise de Sequência de DNA , Sequenciamento do Exoma
13.
Int J Mol Sci ; 20(8)2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31022913

RESUMO

Mucopolysaccharidosis type II (MPSII) is a lysosomal storage disorder due to the deficit of the enzyme iduronate 2-sulfatase (IDS), which leads to the accumulation of glycosaminoglycans in most organ-systems, including the brain, and resulting in neurological involvement in about two-thirds of the patients. The main treatment is represented by a weekly infusion of the functional enzyme, which cannot cross the blood-brain barrier and reach the central nervous system. In this study, a tailored nanomedicine approach based on brain-targeted polymeric nanoparticles (g7-NPs), loaded with the therapeutic enzyme, was exploited. Fibroblasts from MPSII patients were treated for 7 days with NPs loaded with the IDS enzyme; an induced IDS activity like the one detected in healthy cells was measured, together with a reduction of GAG content to non-pathological levels. An in vivo short-term study in MPSII mice was performed by weekly administration of g7-NPs-IDS. Biochemical, histological, and immunohistochemical evaluations of liver and brain were performed. The 6-weeks treatment produced a significant reduction of GAG deposits in liver and brain tissues, as well as a reduction of some neurological and inflammatory markers (i.e., LAMP2, CD68, GFAP), highlighting a general improvement of the brain pathology. The g7-NPs-IDS approach allowed a brain-targeted enzyme replacement therapy. Based on these positive results, the future aim will be to optimize NP formulation further to gain a higher efficacy of the proposed approach.


Assuntos
Encéfalo/efeitos dos fármacos , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Iduronato Sulfatase/administração & dosagem , Mucopolissacaridose II/tratamento farmacológico , Nanopartículas/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/metabolismo , Animais , Encéfalo/enzimologia , Encéfalo/metabolismo , Encéfalo/patologia , Portadores de Fármacos/química , Terapia de Reposição de Enzimas , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Humanos , Iduronato Sulfatase/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucopolissacaridose II/enzimologia , Mucopolissacaridose II/metabolismo , Mucopolissacaridose II/patologia , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química
14.
Eur J Pediatr ; 178(5): 739-753, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30809705

RESUMO

Mucopolysaccharidoses (MPS) are a subgroup of 11 monogenic lysosomal storage disorders due to the deficit of activity of the lysosomal hydrolases deputed to the degradation of mucopolysaccharides. Although individually rare, all together they account for at least 1:25,000 live births. In this study, we present the genetic analysis of a population of 71 MPS patients enrolled in a multicenter Italian study. We re-annotated all variants, according to the latest recommendations, and re-classified them as suggested by the American College of Medical Genetics and Genomics. Variant distribution per type was mainly represented by missense mutations. Overall, 10 patients had received no molecular diagnosis, although 6 of them had undergone either HSCT or ERT, based on clinical and enzymatic evaluations. Moreover, nine novel variants are reported.Conclusions: Our analysis underlines the need to complete the molecular diagnosis in patients previously diagnosed only on a biochemical basis, suggests a periodical re-annotation of the variants and solicits their deposition in public databases freely available to clinicians and researchers. We strongly recommend a molecular diagnosis based on the analysis of the "trio" instead of the sole proband. These recommendations will help to obtain a complete and correct diagnosis of mucopolysaccharidosis, rendering also possible genetic counseling. What is known • MPS are a group of 11 metabolic genetic disorders due to deficits of enzymes involved in the mucopolysaccharides degradation. • Molecular analysis is commonly performed to confirm enzymatic assays. What is new • Eighty-six percent of the 71 patients we collected received a molecular diagnosis; among them, 9 novel variants were reported. • We stress the importance of molecular diagnosis in biochemically diagnosed patients, encourage a periodical re-annotation of variants according to the recent nomenclature and their publication in open databases.


Assuntos
Testes Genéticos , Técnicas de Diagnóstico Molecular , Mucopolissacaridoses/diagnóstico , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Aconselhamento Genético , Marcadores Genéticos , Humanos , Lactente , Itália , Masculino , Mucopolissacaridoses/genética , Mutação de Sentido Incorreto , Adulto Jovem
15.
Ital J Pediatr ; 44(Suppl 2): 129, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30442161

RESUMO

Mucopolysaccharidoses (MPS) are rare inherited disorders caused by a deficit of the lysosomal hydrolases involved in the degradation of mucopolysaccharides, also known as glycosaminoglycans (GAGs). They are all monogenic defects, transmitted in an autosomal recessive way, except for MPS type II which is X-linked. The enzymatic deficit causes a pathologic accumulation of undegraded or partially degraded substrates inside lysosomes as well as in the extracellular compartment. MPS generally present with recognizable signs and symptoms to raise a clinical suspicion. However, although they have individual peculiarities, often signs and symptoms may overlap between different MPS types. Therefore, a deeper evaluation of specific disease biomarkers becomes necessary to reach an appropriate diagnosis. This paper stresses the central role of the laboratory in completing and confirming the clinical suspicion of MPS according to a standardized procedure: first, a biochemical evaluation of the patient samples, including qualitative/quantitative urinary GAG analysis and a determination of enzyme activities, and then the molecular diagnosis. We also encourage a constant and close communication between clinicians and laboratory personnel to address a correct and early MPS diagnosis.


Assuntos
Mucopolissacaridoses/genética , Mucopolissacaridoses/metabolismo , Criança , Glicosaminoglicanos/metabolismo , Humanos , Hidrolases/genética , Mucopolissacaridoses/diagnóstico
16.
Hum Mutat ; 39(12): 1788-1802, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30118150

RESUMO

Maroteaux-Lamy syndrome (MPS VI) is an autosomal recessive lysosomal storage disorder caused by pathogenic ARSB gene variants, commonly diagnosed through clinical findings and deficiency of the arylsulfatase B (ASB) enzyme. Detection of ARSB pathogenic variants can independently confirm diagnosis and render genetic counseling possible. In this review, we collect and summarize 908 alleles (201 distinct variants, including 3 polymorphisms previously considered as disease-causing variants) from 478 individuals diagnosed with MPS VI, identified from literature and public databases. Each variant is further analyzed for clinical classification according to American College of Medical Genetics and Genomics (ACMG) guidelines. Results highlight the heterogeneity of ARSB alleles, with most unique variants (59.5%) identified as missense and 31.7% of unique alleles appearing once. Only 18% of distinct variants were previously recorded in public databases with supporting evidence and clinical significance. ACMG recommends publishing clinical and biochemical data that accurately characterize pathogenicity of new variants in association with reporting specific alleles. Variants analyzed were sent to ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/), and MPS VI locus-specific database (http://mps6-database.org) where they will be available. High clinical suspicion coupled with diagnostic testing for deficient ASB activity and timely submission and classification of ARSB variants with biochemical and clinical data in public databases is essential for timely diagnosis of MPS VI.


Assuntos
Testes Genéticos/métodos , Variação Genética , Mucopolissacaridose VI/diagnóstico , N-Acetilgalactosamina-4-Sulfatase/genética , Bases de Dados Factuais , Diagnóstico Precoce , Frequência do Gene , Homozigoto , Humanos , Conformação Molecular , Mucopolissacaridose VI/genética , Mucopolissacaridose VI/metabolismo , Mutação de Sentido Incorreto , N-Acetilgalactosamina-4-Sulfatase/química , N-Acetilgalactosamina-4-Sulfatase/metabolismo , Sociedades Médicas
17.
Clin Chim Acta ; 486: 221-223, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30110607

RESUMO

BACKGROUND: In total, 930 urine samples obtained on 2nd and 3rd day from birth have been analyzed for the early diagnosis of Mucopolysaccharidoses. METHODS: Dimethylmethylene blue (DMB) assay and one-dimensional electrophoresis were performed in all urine samples. Agarose gel electrophoresis, before and after treatment with chondroitinase ABC and heparinases, was used for a comprehensive characterization. RESULTS: Out of 930 urine samples 7 showed anomalous electrophoretic pattern; 5 of them had high GAG levels by DMB test. Atypical samples (n = 7) were analyzed by agarose gel electrophoresis. After enzymatic digestion, some slow bands were still visible. A second urine sample of the above 7 newborns was analyzed at the age of 1 month, demonstrating both a normal pattern and normal GAG levels. Additional urine and vaginal mucus samples from 10 term neonates with vaginal bleeding showed the same electrophoretic pattern observed in the 7 false positive samples. CONCLUSIONS: The altered electrophoretic pattern may be due to the presence of glycoproteins and not to specific GAGs, due to high levels of maternal hormones exposure during pregnancy. To our knowledge, this is the first time maternal estrogen hormones are proposed as a likely cause of false-positive urinary glycosaminoglycan screen test in healthy newborns.


Assuntos
Mucopolissacaridoses/urina , Eletroforese , Reações Falso-Positivas , Feminino , Humanos , Recém-Nascido , Masculino , Azul de Metileno/análogos & derivados , Azul de Metileno/química , Mucopolissacaridoses/diagnóstico
19.
Hum Mol Genet ; 27(13): 2262-2275, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29648648

RESUMO

Skeletal abnormalities represent a major clinical burden in patients affected by the lysosomal storage disorder mucopolysaccharidosis type II (MPSII, OMIM #309900). While extensive research has emphasized the detrimental role of stored glycosaminoglycans (GAGs) in the bone marrow (BM), a limited understanding of primary cellular mechanisms underlying bone defects in MPSII has hampered the development of bone-targeted therapeutic strategies beyond enzyme replacement therapy (ERT). We here investigated the involvement of key signaling pathways related to the loss of iduronate-2-sulfatase activity in two different MPSII animal models, D. rerio and M. musculus. We found that FGF pathway activity is impaired during early stages of bone development in IDS knockout mice and in a newly generated Ids mutant fish. In both models the FGF signaling deregulation anticipated a slow but progressive defect in bone differentiation, regardless of any extensive GAGs storage. We also show that MPSII patient fibroblasts harboring different mutations spanning the IDS gene exhibit perturbed FGF signaling-related markers expression. Our work opens a new venue to discover possible druggable novel key targets in MPSII.


Assuntos
Encéfalo/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Iduronato Sulfatase/genética , Mucopolissacaridose II/genética , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Terapia de Reposição de Enzimas , Regulação da Expressão Gênica , Glicosaminoglicanos/genética , Humanos , Iduronato Sulfatase/uso terapêutico , Camundongos , Camundongos Knockout , Mucopolissacaridose II/patologia , Transdução de Sinais , Peixe-Zebra/genética
20.
Int J Mol Sci ; 18(5)2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28513549

RESUMO

Lysosomal storage disorders (LSDs) are a group of about 50 genetic metabolic disorders, mainly affecting children, sharing the inability to degrade specific endolysosomal substrates. This results in failure of cellular functions in many organs, including brain that in most patients may go through progressive neurodegeneration. In this study, we analyzed the brain of the mouse model for Hunter syndrome, a LSD mostly presenting with neurological involvement. Whole transcriptome analysis of the cerebral cortex and midbrain/diencephalon/hippocampus areas was performed through RNA-seq. Genes known to be involved in several neurological functions showed a significant differential expression in the animal model for the disease compared to wild type. Among the pathways altered in both areas, axon guidance, calcium homeostasis, synapse and neuroactive ligand-receptor interaction, circadian rhythm, neuroinflammation and Wnt signaling were the most significant. Application of RNA sequencing to dissect pathogenic alterations of complex syndromes allows to photograph perturbations, both determining and determined by these disorders, which could simultaneously occur in several metabolic and biochemical pathways. Results also emphasize the common, altered pathways between neurodegenerative disorders affecting elderly and those associated with pediatric diseases of genetic origin, perhaps pointing out a general common course for neurodegeneration, independent from the primary triggering cause.


Assuntos
Encéfalo/metabolismo , Perfilação da Expressão Gênica , Mucopolissacaridose II/genética , Análise de Sequência de RNA , Animais , Biologia Computacional/métodos , Modelos Animais de Doenças , Regulação da Expressão Gênica , Ontologia Genética , Camundongos , Anotação de Sequência Molecular , Mucopolissacaridose II/metabolismo , Transdução de Sinais , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...