Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharm Sin B ; 9(6): 1231-1240, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31867168

RESUMO

Vaccination via the pulmonary route could be an attractive alternative to parenteral administration. Research towards the best site of antigen deposition within the lungs to induce optimal immune responses has conflicting results which might be dependent on the type of vaccine and/or its physical state. Therefore, in this study, we explored whether deep lung deposition is crucial for two different vaccines, i.e., influenza and hepatitis B vaccine. In view of this, influenza subunit vaccine and hepatitis B surface antigen were labeled with a fluorescent dye and then spray-dried. Imaging data showed that after pulmonary administration to mice the powders were deposited in the trachea/central airways when a commercially available insufflator was used while deep lung deposition was achieved when an in-house built aerosol generator was used. Immunogenicity studies revealed that comparable immune responses were induced upon trachea/central airways or deep lung targeting of dry influenza vaccine formulations. However, for hepatitis B vaccine, no immune responses were induced by trachea/central airways deposition whereas they were considerable after deep lung deposition. Thus, we conclude that deep lung targeting is not a critical parameter for the efficacy of pulmonary administered influenza vaccine whereas for hepatitis B vaccine it is.

2.
Sci Rep ; 9(1): 16239, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31700101

RESUMO

Although animal models are often used in drug research, alternative experimental models are becoming more popular as they reduce animal use and suffering. Of particular interest are precision-cut lung slices, which refer to explants - with a reproducible thickness and diameter - that can be cultured ex vivo. Because lung slices (partially) reflect functional and structural features of whole tissue, they are often applied in the field of immunology, pharmacology, toxicology, and virology. Nevertheless, previous research failed to adequately address concerns with respect to the viability of lung slices. For instance, the effect of oxygen concentration on lung slice viability has never been thoroughly investigated. Therefore, the main goal of this study was to investigate the effect of oxygen concentration (20 vs. 80% O2) on the degree of cell death, anti-oxidant transcription, acute inflammation, and cell proliferation in lung slices. According to the results, slices incubated at 20% O2 displayed less cell death, anti-oxidant transcription, and acute inflammation, as well as more cell proliferation, demonstrating that these slices were considerably more viable than slices cultured at 80% O2. These findings expand our knowledge on lung slices and their use as an alternative experimental model in drug research.


Assuntos
Antioxidantes/metabolismo , Pulmão/citologia , Pulmão/efeitos dos fármacos , Oxigênio/farmacologia , Transcrição Gênica/efeitos dos fármacos , Doença Aguda , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inflamação/genética , Inflamação/patologia , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética
3.
Eur J Pharm Biopharm ; 133: 85-95, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30312742

RESUMO

Bird to human transmission of high pathogenicity avian influenza virus (HPAIV) poses a significant risk of triggering a flu pandemic in the human population. Therefore, vaccination of susceptible poultry during an HPAIV outbreak might be the best remedy to prevent such transmissions. To this end, suitable formulations and an effective mass vaccination method that can be translated to field settings needs to be developed. Our previous study in chickens has shown that inhalation of a non-adjuvanted dry powder influenza vaccine formulation during normal breathing results in partial protection against lethal influenza challenge. The aim of the present study was to improve the effectiveness of pulmonary vaccination by increasing the vaccine dose deposited in the lungs and by the use of suitable adjuvants. Two adjuvants, namely, Bacterium-like Particles (BLP) and Advax, were spray freeze dried with influenza vaccine into dry powder formulations. Delivery of dry formulations directly at the syrinx revealed that BLP and Advax had the potential to boost either systemic or mucosal immune responses or both. Upon passive inhalation of dry influenza vaccine formulations in an optimized set-up, BLP and Advax/BLP adjuvanted formulations induced significantly higher systemic immune responses than the non-adjuvanted formulation. Remarkably, all vaccinated animals not only survived a lethal influenza challenge, but also did not show any shedding of challenge virus except for two out of six animals in the Advax group. Overall, our results indicate that passive inhalation is feasible, effective and suitable for mass vaccination of chickens if it can be adapted to field settings.


Assuntos
Galinhas/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Aviária/imunologia , Pós/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Administração por Inalação , Animais , Anticorpos Antivirais/imunologia , Química Farmacêutica/métodos , Galinhas/virologia , Imunidade nas Mucosas/imunologia , Imunização/métodos , Vacinação/métodos , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
4.
J Control Release ; 288: 199-211, 2018 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-30218687

RESUMO

Administration of influenza vaccines via the respiratory tract has potential benefits over conventional parenteral administration, inducing immunity directly at the site of influenza exposure as well as being needle free. In this study, we investigated the suitability of Advax™, a stable particulate polymorph of inulin, also referred to as delta inulin, as a mucosal adjuvant for whole inactivated influenza vaccine (WIV) administered either as a liquid or dry powder formulation. Spray freeze-drying produced Advax-adjuvanted WIV powder particles in a size range (1-5 µm) suitable for inhalation. The physical and biological characteristics of both WIV and Advax remained unaltered both by admixing WIV with Advax and by spray freeze drying. Upon intranasal or pulmonary immunization, both liquid and dry powder formulations containing Advax induced significantly higher systemic, mucosal and cellular immune responses than non-adjuvanted WIV formulations. Furthermore, pulmonary immunization with Advax-adjuvanted WIV led to robust memory B cell responses along with an increase of lung localization factors i.e. CXCR3, CD69, and CD103. A less pronounced but still positive effect of Advax was seen on memory T cell responses. In contrast to animals immunized with WIV alone, all animals pulmonary immunized with a single dose of Advax-adjuvanted WIV were fully protected with no visible clinical symptoms against a lethal dose of influenza virus. These data confirm that Advax is a potent mucosal adjuvant that boosts vaccine-induced humoral and cellular immune responses both in the lung and systemically with major positive effects on B-cell memory and complete protection against live virus. Hence, respiratory tract immunization, particularly via the lungs, with Advax-adjuvanted WIV formulation as a liquid or dry powder is a promising alternative to parenteral influenza vaccination.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/administração & dosagem , Inulina/análogos & derivados , Vacinas de Produtos Inativados/administração & dosagem , Administração por Inalação , Animais , Anticorpos Antivirais/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Feminino , Inulina/administração & dosagem , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
5.
Drug Deliv ; 25(1): 533-545, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29451040

RESUMO

Administration of influenza vaccines to the lungs could be an attractive alternative to conventional parenteral administration. In this study, we investigated the deposition site of pulmonary delivered liquid and powder influenza vaccine formulations and its relation to their immunogenicity and protective efficacy. In vivo deposition studies in cotton rats revealed that, the powder formulation was mainly deposited in the trachea ( ∼ 65%) whereas the liquid was homogenously distributed throughout the lungs ( ∼ 96%). In addition, only 60% of the antigen in the powder formulation was deposited in the respiratory tract with respect to the liquid formulation. Immunogenicity studies showed that pulmonary delivered liquid and powder influenza formulations induced robust systemic and mucosal immune responses (significantly higher by liquids than by powders). When challenged with a clinical isolate of homologous H1N1pdm virus, all animals pulmonary administered with placebo had detectable virus in their lungs one day post challenge. In contrast, none of the vaccinated animals had detectable lung virus titers, except for two out of eight animals from the powder immunized group. Also, pulmonary vaccinated animals showed no or little signs of infection like increase in breathing frequency or weight loss upon challenge as compared to animals from the negative control group. In conclusion, immune responses induced by liquid formulation were significantly higher than responses induced by powder formulation, but the overall protective efficacy of both formulations was comparable. Thus, pulmonary immunization is capable of inducing protective immunity and the site of antigen deposition seems to be of minor relevance in inducing protection.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Pulmão/virologia , Proteínas Virais/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Linhagem Celular , Cães , Imunidade nas Mucosas/imunologia , Imunização/métodos , Células Madin Darby de Rim Canino , Pós/administração & dosagem , Ratos , Sigmodontinae , Vacinação/métodos
6.
Expert Rev Vaccines ; 15(11): 1431-1447, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27118428

RESUMO

Cold-chain requirements, limited stockpiling potential and the lack of potent immune responses are major challenges of parenterally formulated influenza vaccines. Decreased cold chain dependence and stockpiling can be achieved if vaccines are formulated in a dry state using suitable excipients and drying technologies. Furthermore, having the vaccine in a dry state enables the development of non-parenteral patient friendly dosage forms: microneedles for transdermal administration, tablets for oral administration, and powders for epidermal, nasal or pulmonary administration. Moreover, these administration routes have the potential to elicit an improved immune response. This review highlights the rationale for the development of dried influenza vaccines, as well as processes used for the drying and stabilization of influenza vaccines; it also compares the immunogenicity of dried influenza vaccines administered via non-invasive routes with that of parenterally administered influenza vaccines. Finally, it discusses unmet needs, challenges and future developments in the field of dried influenza vaccines.


Assuntos
Dessecação/métodos , Estabilidade de Medicamentos , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Humanos
7.
Eur J Pharm Biopharm ; 87(2): 329-37, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24602675

RESUMO

In this study, the in vitro release of proteins from novel, biodegradable phase-separated poly(ε-caprolactone-PEG)-block-poly(ε-caprolactone), [PCL-PEG]-b-[PCL]) multiblock copolymers with different block ratios and with a low melting temperature (49-55°C) was studied. The effect of block ratio and PEG content of the polymers (i.e. 22.5, 37.5 and 52.5 wt%) as well as the effect of protein molecular weight (1.2, 5.8, 14, 29 and 66 kDa being goserelin, insulin, lysozyme, carbonic anhydrase and albumin, respectively) on protein release was investigated. Proteins were spray-dried with inulin as stabilizer to obtain a powder of uniform particle size. Spray-dried inulin-stabilized proteins were incorporated into polymeric implants by hot melt extrusion. All incorporated proteins fully preserved their structural integrity as determined after extraction of these proteins from the polymeric implants. In general, it was found that the release rate of the protein increased with decreasing molecular weight of the protein and with increasing the PEG content of the polymer. Swelling and degradation rate of the copolymer increased with increasing PEG content. Hence, release of proteins of various molecular weights from [PCL-PEG]-b-[PCL] multi-block copolymers can be tailored by varying the PEG content of the polymer.


Assuntos
Implantes Absorvíveis , Portadores de Fármacos , Poliésteres/química , Polietilenoglicóis/química , Proteínas/química , Química Farmacêutica , Implantes de Medicamento , Cinética , Peso Molecular , Estabilidade Proteica , Solubilidade , Tecnologia Farmacêutica/métodos , Temperatura de Transição
8.
Langmuir ; 30(7): 1812-9, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24472026

RESUMO

The aim of this work was to generate a tunable surface isoelectric point (sIEP), where the surface is modified with two molecules: a weak base (pyridine), carrying a pH dependent positive charge, and a derivative of a strong acid (sulfate), carrying a permanent negative charge in a physiologically relevant pH range. To this end, silicon surfaces were modified with 3-aminopropyltriethoxysilane. These amine-modified surfaces were subsequently derivatized into pyridine- or sulfate-modified surfaces. Then, the surface pKa of pyridine-modified surfaces was determined by a fluorescent nanoparticle adhesion assay (FNAA). Next, these values were used to calculate in which ratio the chemicals must be present in the reaction mixture to generate a mixed pyridine/sulfate-modified surface with a target sIEP. After preparing surfaces with a target sIEP, an FNAA with positively and negatively charged nanoparticles was used to verify the sIEP of the generated surfaces. The FNAA revealed that pyridine-modified surfaces had a pKa of 6.69 ± 0.18. When an sIEP was generated, negative nanoparticles bound to surfaces at pH values below the sIEP and positive nanoparticles bound at pH values above the sIEP. Furthermore, we found sIEP values of 5.97 ± 0.88 when we aimed for an sIEP of 6.2, and 7.12 ± 0.21 when we aimed for an sIEP of 7.1. Finally, the pH dependent binding and release of a negatively and positively charged (bio)polymer was investigated for a target sIEP of 7. A negatively charged polymer (poly(I:C)) was bound at a pH < sIEP and released at a pH > sIEP with a release efficiency of 85 ± 9% and a positively charged polymer (trimethyl chitosan) bound at a pH > sIEP and released at a pH < sIEP with a release efficiency of 72 ± 9%. In conclusion, we established a method for preparing modified silicon surfaces with a tunable sIEP, which can be used for pH-dependent binding and release of biomacromolecules.


Assuntos
Silício/química , Ponto Isoelétrico , Estrutura Molecular , Piridinas/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...