Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(6): 569, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777943

RESUMO

Nanomaterials are widely employed in wastewater treatment, among which nanoferrites and their composites hold significant prominence. This study adopts a green approach to synthesize zinc ferrite nanoparticles, subsequently integrating them with polyaniline (PANI) to fabricate the ZnFe2O4-PANI nanocomposite. Characterization of the prepared ZnFe2O4-PANI nanocomposite was conducted using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopic (SEM) techniques. Using Scherrer's equation, the crystallite size of the synthesized zinc ferrite nanoparticles was found to be 17.67 nm. SEM micrographs of the ZnFe2O4-PANI nanocomposite revealed that in situ polymerization of ZnFe2O4 with polyaniline transforms the amorphous surface morphology of the polymer into a homogeneous nanoparticle structure. The adsorption of crystal violet (CV) dye onto the surface of the ZnFe2O4-PANI nanocomposite depends on pH, adsorbent dosage, temperature, concentration levels and duration. The Langmuir adsorption model fitted the data well, indicating adherence to a pseudo-second-order kinetic pattern. Thermodynamic values ΔG°, ΔH° and ΔS° indicated that the adsorption process occurred spontaneously. Advantages and disadvantages of the technique have also been highlighted. Mechanism of adsorption is discussed. From the obtained results, it is evident that the ZnFe2O4-PANI nanocomposite holds promise as a sorbent for the removal of dye from wastewater.


Assuntos
Compostos de Anilina , Compostos Férricos , Violeta Genciana , Nanocompostos , Poluentes Químicos da Água , Zinco , Compostos de Anilina/química , Violeta Genciana/química , Nanocompostos/química , Poluentes Químicos da Água/química , Compostos Férricos/química , Zinco/química , Adsorção , Eliminação de Resíduos Líquidos/métodos , Cinética , Purificação da Água/métodos
2.
ACS Omega ; 8(47): 44812-44819, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38046322

RESUMO

This paper targets the nuclease activity of polymeric chemical compounds toward bacterial genomic DNA and also elucidates their probable drug-like properties against the enzymes bacterial gyrase complex and human topoisomerase. Poly-o-chloroaniline, poly-m-chloroaniline, and poly-o,m-chloroaniline were synthesized by a chemical oxidation method. The structure of the polymers was characterized by the powder X-ray diffraction pattern, which suggested the ordered structure of the polymer, where the parallel and perpendicular periodicities of the polymeric chain were arranged systematically. The molecular transition of polymers was determined by a UV-visible spectrum study. A polymeric arrangement of the molecule can be seen in scanning electron microscopy (SEM) images. Among the three polymers chosen for the biological study and molecular docking studies, poly-m-chloroaniline showed more affinity to bind against both the selected targets (HT IIIb TB and SAGS) in comparison to the ortho- and ortho-meta substituents of polyaniline. The biophysical interaction analysis is in line with molecular docking, which shows that poly-m-chloroaniline forms many different categories of interactions and binds very strongly with the selected targets. The synthesized and tested molecules have potential nuclease activity, which is well aligned with molecular docking studies against the bacterial gyrase complex and human topoisomerase.

3.
Appl Biochem Biotechnol ; 195(10): 6168-6182, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36847986

RESUMO

The growing field of nanotechnology and its many applications have led to the irregular release of nanoparticles (NPs), with unintended effects on the environment and continued contamination of water bodies. Metallic NPs are used more frequently in extreme environmental conditions due to their higher efficiency, which attracts more attention in various applications. Due to improper pre-treatment of biosolids, inefficient wastewater treatment practices, and other unregulated agricultural practices continue to contaminate the environment. In particular, the uncontrolled use of NPs in various industrial applications has led to damage to the microbial flora and caused irreplaceable damage to animals and plants. This study focuses on the effect of different doses, types, and compositions of NP on the ecosystem. The review also mentions the impact of various metallic NPs on microbial ecology, their interactions with microorganisms, ecotoxicity studies, and dosage evaluation of the NPs, mainly focused on the review article. However, further research is still needed to understand the complexity of interactions between NPs and microbes in soil and aquatic ecosystems.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Poluentes do Solo , Animais , Ecossistema , Nanopartículas Metálicas/toxicidade , Solo , Agricultura
4.
Cells ; 10(10)2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-34685518

RESUMO

Myocardium Infarction (MI) is one of the foremost cardiovascular diseases (CVDs) causing death worldwide, and its case numbers are expected to continuously increase in the coming years. Pharmacological interventions have not been at the forefront in ameliorating MI-related morbidity and mortality. Stem cell-based tissue engineering approaches have been extensively explored for their regenerative potential in the infarcted myocardium. Recent studies on microfluidic devices employing stem cells under laboratory set-up have revealed meticulous events pertaining to the pathophysiology of MI occurring at the infarcted site. This discovery also underpins the appropriate conditions in the niche for differentiating stem cells into mature cardiomyocyte-like cells and leads to engineering of the scaffold via mimicking of native cardiac physiological conditions. However, the mode of stem cell-loaded engineered scaffolds delivered to the site of infarction is still a challenging mission, and yet to be translated to the clinical setting. In this review, we have elucidated the various strategies developed using a hydrogel-based system both as encapsulated stem cells and as biocompatible patches loaded with cells and applied at the site of infarction.


Assuntos
Infarto do Miocárdio/patologia , Miocárdio/citologia , Miócitos Cardíacos/citologia , Regeneração/fisiologia , Células-Tronco/citologia , Diferenciação Celular/fisiologia , Humanos , Infarto do Miocárdio/fisiopatologia , Transplante de Células-Tronco/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais
5.
Curr Pharm Biotechnol ; 22(13): 1705-1747, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33845733

RESUMO

It is an age of nanomaterials. Nanotechnology has revolutionized the scientific world. Every sphere of technology has benefited significantly by using nanomaterials. A number of physical and chemical methods are being used for the synthesis of nanomaterials. In recent years, much emphasis is placed on green synthesis, particularly by using plant extracts or microorganisms. This is useful for promoting environmental sustainability. Microwave heating and ultrasound techniques are also being used for the synthesis of different types of nanomaterials. Green synthesis is a more advanced method of synthesizing nanomaterials over other methods because of its simplicity, lower cost, and relatively higher reproducibility. Plants produce more stable nanoparticles compared to other means, and it is straightforward to scale up. The risk of contamination is also lower. In this article, different methods of green synthesis of nanomaterials and applications have been reviewed and discussed.


Assuntos
Nanopartículas , Nanoestruturas , Nanotecnologia , Plantas , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...