Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 318(4): H976-H984, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32142377

RESUMO

There is a sustained reduction in arterial blood pressure that occurs in aged adults following exposure to acute leg heating. We tested the hypothesis that acute leg heating would decrease arterial blood pressure in aged adults secondary to sympathoinhibition. We exposed 13 young and 10 aged adults to 45 min of leg heating. Muscle sympathetic nerve activity (radial nerve) was measured before leg heating (preheat) and 30 min after (recovery) and is expressed as burst frequency. Neurovascular transduction was examined by assessing the slope of the relation between muscle sympathetic nerve activity and leg vascular conductance measured at rest and during isometric handgrip exercise performed to fatigue. Arterial blood pressure was well maintained in young adults (preheat, 86 ± 6 mmHg vs. recovery, 88 ± 7 mmHg; P = 0.4) due to increased sympathetic nerve activity (preheat, 16 ± 7 bursts/min vs. recovery, 22 ± 10 bursts/min; P < 0.01). However, in aged adults, sympathetic nerve activity did not differ from preheat (37 ± 5 bursts/min) to recovery (33 ± 6 bursts/min, P = 0.1), despite a marked reduction in arterial blood pressure (preheat, 101 ± 7 mmHg vs. recovery, 94 ± 6 mmHg; P < 0.01). Neurovascular transduction did not differ from preheat to recovery for either age group (P ≥ 0.1). The reduction in arterial blood pressure that occurs in aged adults following exposure to acute leg heating is mediated, in part, by a sympathoinhibitory effect that alters the compensatory neural response to hypotension.NEW & NOTEWORTHY There is a sustained reduction in arterial blood pressure that occurs in aged adults following exposure to acute leg heating. However, the neurovascular mechanisms mediating this response remain unknown. Our findings demonstrate for the first time that this reduction in arterial blood pressure is mediated, in part, by a sympathoinhibitory effect that alters the compensatory neural response to hypotension in aged adults.


Assuntos
Envelhecimento/fisiologia , Pressão Sanguínea , Resposta ao Choque Térmico , Sistema Nervoso Simpático/fisiologia , Adulto , Idoso , Feminino , Força da Mão , Humanos , Perna (Membro)/crescimento & desenvolvimento , Perna (Membro)/fisiologia , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/crescimento & desenvolvimento , Músculo Liso Vascular/fisiologia , Condução Nervosa , Sistema Nervoso Simpático/crescimento & desenvolvimento
2.
Exp Physiol ; 105(2): 302-311, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31707732

RESUMO

NEW FINDINGS: • What is the central question of this study? What is the effect of lower leg hot water immersion on vascular ischaemia-reperfusion injury induced in the arm of young healthy humans? • What is the main finding and its importance? Lower leg hot water immersion successfully protects against vascular ischaemia-reperfusion injury in humans. This raises the possibility that targeted heating of the lower legs may be an alternative therapeutic approach to whole-body heating that is equally efficacious at protecting against vascular ischaemia-reperfusion injury. ABSTRACT: Reperfusion that follows a period of ischaemia paradoxically reduces vasodilator function in humans and contributes to the tissue damage associated with an ischaemic event. Acute whole-body hot water immersion protects against vascular ischaemia-reperfusion (I-R) injury in young healthy humans. However, the effect of acute lower leg heating on I-R injury is unclear. Therefore, the purpose of this study was to test the hypothesis that, compared with thermoneutral control immersion, acute lower leg hot water immersion would prevent the decrease in macro- and microvascular dilator functions following I-R injury in young healthy humans. Ten young healthy subjects (5 female) immersed their lower legs into a circulated water bath for 60 min under two randomized conditions: (1) thermoneutral control immersion (∼33°C) and (2) hot water immersion (∼42°C). Macrovascular (brachial artery flow-mediated dilatation) and microvascular (forearm reactive hyperaemia) dilator functions were assessed using Doppler ultrasound at three time points: (1) pre-immersion, (2) 60 min post-immersion, and (3) post-I/R (20 min of arm ischaemia followed by 20 min of reperfusion). Ischaemia-reperfusion injury reduced macrovascular dilator function following control immersion (pre-immersion 6.0 ± 2.1% vs. post-I/R 3.6 ± 2.1%; P < 0.05), but was well-maintained with prior hot water immersion (pre-immersion 5.8 ± 2.1% vs. post-I/R 5.3 ± 2.1%; P = 0.8). Microvascular dilator function did not differ between conditions or across time. Taken together, acute lower leg hot water immersion prevents the decrease in macrovascular dilator function that occurs following I-R injury in young healthy humans.


Assuntos
Artéria Braquial/fisiologia , Hipertermia Induzida/métodos , Imersão , Perna (Membro)/irrigação sanguínea , Traumatismo por Reperfusão/fisiopatologia , Vasodilatação/fisiologia , Adulto , Velocidade do Fluxo Sanguíneo/fisiologia , Feminino , Antebraço/irrigação sanguínea , Antebraço/fisiologia , Humanos , Perna (Membro)/fisiologia , Masculino , Microvasos/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Traumatismo por Reperfusão/prevenção & controle , Água , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...