Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 48(22): 6779-82, 2005 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-16250635

RESUMO

A series of oxamyl dipeptides were optimized for pan caspase inhibition, anti-apoptotic cellular activity and in vivo efficacy. This structure-activity relationship study focused on the P4 oxamides and warhead moieties. Primarily on the basis of in vitro data, inhibitors were selected for study in a murine model of alpha-Fas-induced liver injury. IDN-6556 (1) was further profiled in additional in vivo models and pharmacokinetic studies. This first-in-class caspase inhibitor is now the subject of two Phase II clinical trials, evaluating its safety and efficacy for use in liver disease.


Assuntos
Inibidores de Caspase , Hepatopatias/tratamento farmacológico , Ácidos Pentanoicos/síntese química , Adulto , Alanina Transaminase/sangue , Animais , Apoptose/efeitos dos fármacos , Aspartato Aminotransferases/sangue , Disponibilidade Biológica , Caspase 3 , Colestase/tratamento farmacológico , Colestase/patologia , Ensaios Clínicos Fase I como Assunto , Meia-Vida , Hepatite C Crônica/tratamento farmacológico , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Células Jurkat , Fígado/efeitos dos fármacos , Fígado/patologia , Hepatopatias/enzimologia , Hepatopatias/etiologia , Camundongos , Ácidos Pentanoicos/química , Ácidos Pentanoicos/farmacologia , Ratos , Relação Estrutura-Atividade
3.
Nature ; 435(7042): 677-81, 2005 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-15902208

RESUMO

Proteins in the Bcl-2 family are central regulators of programmed cell death, and members that inhibit apoptosis, such as Bcl-X(L) and Bcl-2, are overexpressed in many cancers and contribute to tumour initiation, progression and resistance to therapy. Bcl-X(L) expression correlates with chemo-resistance of tumour cell lines, and reductions in Bcl-2 increase sensitivity to anticancer drugs and enhance in vivo survival. The development of inhibitors of these proteins as potential anti-cancer therapeutics has been previously explored, but obtaining potent small-molecule inhibitors has proved difficult owing to the necessity of targeting a protein-protein interaction. Here, using nuclear magnetic resonance (NMR)-based screening, parallel synthesis and structure-based design, we have discovered ABT-737, a small-molecule inhibitor of the anti-apoptotic proteins Bcl-2, Bcl-X(L) and Bcl-w, with an affinity two to three orders of magnitude more potent than previously reported compounds. Mechanistic studies reveal that ABT-737 does not directly initiate the apoptotic process, but enhances the effects of death signals, displaying synergistic cytotoxicity with chemotherapeutics and radiation. ABT-737 exhibits single-agent-mechanism-based killing of cells from lymphoma and small-cell lung carcinoma lines, as well as primary patient-derived cells, and in animal models, ABT-737 improves survival, causes regression of established tumours, and produces cures in a high percentage of the mice.


Assuntos
Antineoplásicos/uso terapêutico , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/classificação , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Compostos de Bifenilo/síntese química , Compostos de Bifenilo/química , Carcinoma de Células Pequenas/tratamento farmacológico , Carcinoma de Células Pequenas/patologia , Linhagem Celular Tumoral , Citocromos c/metabolismo , Modelos Animais de Doenças , Sinergismo Farmacológico , Humanos , Linfoma/tratamento farmacológico , Linfoma/patologia , Espectroscopia de Ressonância Magnética , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Moleculares , Nitrofenóis , Paclitaxel/farmacologia , Piperazinas , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Relação Estrutura-Atividade , Sulfonamidas , Taxa de Sobrevida
4.
J Med Chem ; 47(18): 4417-26, 2004 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-15317454

RESUMO

Inhibitor of apoptosis (IAP) proteins are overexpressed in many cancers and have been implicated in tumor growth, pathogenesis, and resistance to chemo- or radiotherapy. On the basis of the NMR structure of a SMAC peptide complexed with the BIR3 domain of X-linked IAP (XIAP), a novel series of XIAP antagonists was discovered. The most potent compounds in this series bind to the baculovirus IAP repeat 3 (BIR3) domain of XIAP with single-digit nanomolar affinity and promote cell death in several human cancer cell lines. In a MDA-MB-231 breast cancer mouse xenograft model, these XIAP antagonists inhibited the growth of tumors. Close structural analogues that showed only weak binding to the XIAP-BIR3 domain were inactive in the cellular assays and showed only marginal in vivo activity. Our results are consistent with a mechanism in which ligands for the BIR3 domain of XIAP induce apoptosis by freeing up caspases. The present study validates the BIR3 domain of XIAP as a target and supports the use of small molecule XIAP antagonists as a potential therapy for cancers that overexpress XIAP.


Assuntos
Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proteínas de Transporte/química , Proteínas Mitocondriais/química , Fragmentos de Peptídeos/uso terapêutico , Proteínas/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose , Sítios de Ligação , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proteínas de Transporte/uso terapêutico , Caspases/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Ligantes , Camundongos , Proteínas Mitocondriais/uso terapêutico , Fragmentos de Peptídeos/química , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Transplante Heterólogo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X
6.
Bioorg Med Chem Lett ; 13(20): 3623-6, 2003 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-14505683

RESUMO

Various aryloxy methyl ketones of the 1-naphthyloxyacetyl-Val-Asp backbone have been prepared. A systematic study of their structure-activity relationship (SAR) related to caspases 1, 3, 6, and 8 is reported. Highly potent irreversible broad-spectrum caspase inhibitors have been identified. Their efficacy in cellular models of cell death and inflammation are also discussed.


Assuntos
Inibidores de Caspase , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Relação Estrutura-Atividade
7.
Anesthesiology ; 99(1): 112-21, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12826850

RESUMO

BACKGROUND: Global cerebral ischemia is associated with delayed neuronal death. Given the role of caspases in apoptosis, caspase inhibitors may provide neuronal protection after cardiac arrest. To this end, the authors generated a transgenic rat line expressing baculovirus p35, a broad-spectrum caspase inhibitor, in central neurons. Its effects were evaluated on neuronal cell death and outcome after global cerebral ischemia. METHODS: Global cerebral ischemia was induced by cardiocirculatory arrest. After 6 min, animals were resuscitated by controlled ventilation, extrathoracic cardiac massage, epinephrine, and electrical countershocks. Neuronal death was assessed after 7 days by histologic evaluation of the hippocampal cornu ammonis 1 sector. Postischemic outcome was assessed by determination of overall survival and according to neurologic deficit scores 24 h, 3 days, and 7 days after resuscitation. RESULTS: The rate of 7-day survival after cardiac arrest for the transgenic rats (85%) was significantly higher than that for the nontransgenic controls (52%; P < 0.05). However, no differences were observed either in the number of terminal deoxynucleotidyltransferase-mediated d-uracil triphosphate-biotin nick end-labeling-positive cells or viable neurons in the cornu ammonis 1 sector or in the neurologic deficit score when comparing surviving transgenic and nontransgenic rats. These findings suggest that neuronal apoptosis after cardiac arrest is not primarily initiated by activation of caspases. CONCLUSION: Expression of baculovirus p35 can improve survival after cardiac arrest in rats, but the mode and site of action remain to be elucidated.


Assuntos
Baculoviridae/metabolismo , Reanimação Cardiopulmonar , Inibidores de Caspase , Inibidores Enzimáticos/metabolismo , Parada Cardíaca/fisiopatologia , Proteínas Virais/fisiologia , Animais , Animais Geneticamente Modificados , Northern Blotting , Southern Blotting , Western Blotting , Química Encefálica/genética , Isquemia Encefálica/patologia , Morte Celular/fisiologia , Eletrochoque , Hipocampo/patologia , Hibridização In Situ , Marcação In Situ das Extremidades Cortadas , Proteínas Inibidoras de Apoptose , Microinjeções , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Neurônios/patologia , Ratos , Ratos Wistar , Sobrevida , Proteínas Virais/biossíntese , Proteínas Virais/genética
8.
Biochemistry ; 42(14): 4151-60, 2003 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12680769

RESUMO

Amino acid sequences of caspases 1, 3, 7, and 8 were aligned with their published three-dimensional (3D) structures. The resultant alignment was used as a template to compare the primary structures of caspases 2, 4-6, and 9-11 to build 3D homology models. The structural models were subsequently refined and validated using structure-activity relationship data obtained from an array of substrate-like inhibitors. All caspases were shown to have identical S1 and catalytic dyad architecture but diverse S2-S4 structures. S2 pockets of these 11 caspases can be briefly categorized into two groups: Csp3, -6, and -7 as one and Csp1, -2, -4, -5, -8, -9, -10, and -11 as the other. S2 pockets of Csp3, -6, and -7 are smaller than those of the other eight caspases, and are limited to binding small P2 residues such as Ala and Val. At the S3 site, the presence of a conserved Arg in all caspases suggests that Glu would be a universally preferred P3 residue. Csp8 and Csp9 have an additional Arg in this pocket that can further enhance the binding of a P3 Glu, whereas Csp2 has a Glu adjacent to the conserved Arg. As such, Csp2 is the only caspase that can accommodate both positively and negatively charged P3. At S4, Csp1, -4, -5, and -11 are closely related with respect to their structures and binder preferences; all have a large hydrophobic pocket and prefer large hydrophobic residues such as Trp. S4 of Csp2, -3, and -7 represents an opposite group with a conformation that is highly specific in binding an Asp. The S4 structures of Csp6, -8, -9, and -10 appear to be hybrids of the two extremes, and have little specificity for any P4. Information revealed from this work provides a guide for designing potent caspase inhibitors with desirable specificity.


Assuntos
Caspases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Caspases/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
9.
J Biol Chem ; 278(10): 8091-8, 2003 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-12506111

RESUMO

The apoptosome is a multiprotein complex comprising Apaf-1, cytochrome c, and caspase-9 that functions to activate caspase-3 downstream of mitochondria in response to apoptotic signals. Binding of cytochrome c and dATP to Apaf-1 in the cytosol leads to the assembly of a heptameric complex in which each Apaf-1 subunit is bound noncovalently to a procaspase-9 subunit via their respective CARD domains. Assembly of the apoptosome results in the proteolytic cleavage of procaspase-9 at the cleavage site PEPD(315) to yield the large (p35) and small (p12) caspase-9 subunits. In addition to the PEPD site, caspase-9 contains a caspase-3 cleavage site (DQLD(330)), which when cleaved, produces a smaller p10 subunit in which the NH(2)-terminal 15 amino acids of p12, including the XIAP BIR3 binding motif, are removed. Using purified proteins in a reconstituted reaction in vitro, we have assessed the relative impact of Asp(315) and Asp(330) cleavage on caspase-9 activity within the apoptosome. In addition, we characterized the effect of caspase-3 feedback cleavage of caspase-9 on the rate of caspase-3 activation, and the potential ramifications of Asp(330) cleavage on XIAP-mediated inhibition of the apoptosome. We have found that cleavage of procaspase-9 at Asp(330) to generate p35, p10 or p37, p10 forms resulted in a significant increase (up to 8-fold) in apoptosome activity compared with p35/p12. The significance of this increase was demonstrated by the near complete loss of apoptosome-mediated caspase-3 activity when a point mutant (D330A) of procaspase-9 was substituted for wild-type procaspase-9 in the apoptosome. In addition, cleavage at Asp(330) exposed a novel p10 NH(2)-terminal peptide motif (AISS) that retained the ability to mediate XIAP inhibition of caspase-9. Thus, whereas feedback cleavage of caspase-9 by caspase-3 significantly increases the activity of the apoptosome, it does little to attenuate its sensitivity to inhibition by XIAP.


Assuntos
Apoptose , Caspases/metabolismo , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Fator Apoptótico 1 Ativador de Proteases , Caspase 3 , Caspase 9 , Inibidores de Caspase , Caspases/química , Grupo dos Citocromos c/metabolismo , Ativação Enzimática , Humanos , Hidrólise , Cinética , Dados de Sequência Molecular , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X
10.
Nature ; 419(6907): 634-7, 2002 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-12374983

RESUMO

Apoptosis is an evolutionarily conserved cell suicide process executed by cysteine proteases (caspases) and regulated by the opposing factions of the Bcl-2 protein family. Mammalian caspase-9 and its activator Apaf-1 were thought to be essential, because mice lacking either of them display neuronal hyperplasia and their lymphocytes and fibroblasts seem resistant to certain apoptotic stimuli. Because Apaf-1 requires cytochrome c to activate caspase-9, and Bcl-2 prevents mitochondrial cytochrome c release, Bcl-2 is widely believed to inhibit apoptosis by safeguarding mitochondrial membrane integrity. Our results suggest a different, broader role, because Bcl-2 overexpression increased lymphocyte numbers in mice and inhibited many apoptotic stimuli, but the absence of Apaf-1 or caspase-9 did not. Caspase activity was still discernible in cells lacking Apaf-1 or caspase-9, and a potent caspase antagonist both inhibited apoptosis and retarded cytochrome c release. We conclude that Bcl-2 regulates a caspase activation programme independently of the cytochrome c/Apaf-1/caspase-9 'apoptosome', which seems to amplify rather than initiate the caspase cascade.


Assuntos
Apoptose , Caspases/metabolismo , Grupo dos Citocromos c/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Fator Apoptótico 1 Ativador de Proteases , Linfócitos B/citologia , Caspase 9 , Células Cultivadas , Ativação Enzimática , Hematopoese/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/citologia
13.
ScientificWorldJournal ; 1: 104, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-30147582
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...