Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 163: 114845, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37167730

RESUMO

Chronic pain is an enormous public health concern, and its treatment is still an unmet medical need. Starting from data highlighting the promising effects of some nonsteroidal anti-inflammatory drugs in combination with gabapentin in pain treatment, we sought to combine ketoprofen lysine salt (KLS) and gabapentin to obtain an effective multimodal therapeutic approach for chronic pain. Using relevant in vitro models, we first demonstrated that KLS and gabapentin have supra-additive effects in modulating key pathways in neuropathic pain and gastric mucosal damage. To leverage these supra-additive effects, we then chemically combined the two drugs via co-crystallization to yield a new compound, a ternary drug-drug co-crystal of ketoprofen, lysine and gabapentin (KLS-GABA co-crystal). Physicochemical, biodistribution and pharmacokinetic studies showed that within the co-crystal, ketoprofen reaches an increased gastrointestinal solubility and permeability, as well as a higher systemic exposure in vivo compared to KLS alone or in combination with gabapentin, while both the constituent drugs have increased central nervous system permeation. These unique characteristics led to striking, synergistic anti-nociceptive and anti-inflammatory effects of KLS-GABA co-crystal, as well as significantly reduced spinal neuroinflammation, in translational inflammatory and neuropathic pain rat models, suggesting that the synergistic therapeutic effects of the constituent drugs are further boosted by the co-crystallization. Notably, while strengthening the therapeutic effects of ketoprofen, KLS-GABA co-crystal showed remarkable gastrointestinal tolerability in both inflammatory and chronic neuropathic pain rat models. In conclusion, these results allow us to propose KLS-GABA co-crystal as a new drug candidate with high potential clinical benefit-to-risk ratio for chronic pain treatment.


Assuntos
Dor Crônica , Cetoprofeno , Neuralgia , Ratos , Animais , Cetoprofeno/efeitos adversos , Gabapentina/uso terapêutico , Doenças Neuroinflamatórias , Lisina/uso terapêutico , Lisina/farmacologia , Dor Crônica/tratamento farmacológico , Distribuição Tecidual , Anti-Inflamatórios não Esteroides/efeitos adversos , Neuralgia/tratamento farmacológico
2.
Cells ; 12(5)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36899865

RESUMO

The intestinal barrier is the main contributor to gut homeostasis. Perturbations of the intestinal epithelium or supporting factors can lead to the development of intestinal hyperpermeability, termed "leaky gut". A leaky gut is characterized by loss of epithelial integrity and reduced function of the gut barrier, and is associated with prolonged use of Non-Steroidal Anti-Inflammatories. The harmful effect of NSAIDs on intestinal and gastric epithelial integrity is considered an adverse effect that is common to all drugs belonging to this class, and it is strictly dependent on NSAID properties to inhibit cyclo-oxygenase enzymes. However, different factors may affect the specific tolerability profile of different members of the same class. The present study aims to compare the effects of distinct classes of NSAIDs, such as ketoprofen (K), Ibuprofen (IBU), and their corresponding lysine (Lys) and, only for ibuprofen, arginine (Arg) salts, using an in vitro model of leaky gut. The results obtained showed inflammatory-induced oxidative stress responses, and related overloads of the ubiquitin-proteasome system (UPS) accompanied by protein oxidation and morphological changes to the intestinal barrier, many of these effects being counteracted by ketoprofen and ketoprofen lysin salt. In addition, this study reports for the first time a specific effect of R-Ketoprofen on the NFkB pathway that sheds new light on previously reported COX-independent effects, and that may account for the observed unexpected protective effect of K on stress-induced damage on the IEB.


Assuntos
Cetoprofeno , Humanos , Ibuprofeno/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Estresse Oxidativo
3.
J Med Chem ; 64(22): 16820-16837, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34762442

RESUMO

Transient receptor potential melastatin 8 (TRPM8) is crucially involved in pain modulation and perception, and TRPM8 antagonists have been proposed as potential therapeutic approaches for pain treatment. Previously, we developed two TRPM8 antagonists and proposed them as drug candidates for topical and systemic pain treatment. Here, we describe the design and synthesis of these two TRPM8 antagonists (27 and 45) and the rational approach of modulation/replacement of bioisosteric chemical groups, which allowed us to identify a combination of narrow ranges of pKa and LogD values that were crucial to ultimately optimize their potency and metabolic stability. Following the same approach, we then pursued the development of new TRPM8 antagonists suitable for the topical treatment of ocular painful conditions and identified two new compounds (51 and 59), N-alkoxy amide derivatives, that can permeate across ocular tissue and reduce the behavioral responses induced by the topical ocular menthol challenge in vivo.


Assuntos
Analgésicos/química , Analgésicos/farmacologia , Descoberta de Drogas , Oftalmopatias/tratamento farmacológico , Manejo da Dor/métodos , Canais de Cátion TRPM/antagonistas & inibidores , Células HEK293 , Humanos , Relação Estrutura-Atividade
4.
Bioorg Med Chem Lett ; 52: 128392, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34606996

RESUMO

The preliminary results on the development of a viable methodology for the further functionalization of 4-hydroxythiazole derivatives to afford target TRPM8 antagonists are reported. The combined Sonogashira coupling/annulation reactions of the ethyl 2-(3-fluorophenyl)-4-tifluoromethylsulfonyloxy-1,3-thiazole-5-carboxylate have been applied to the synthesis of analogues of the selective blocker of TRPM8 DFL23448. Among all the synthetised derivatives, the most promising compound resulted to be active as TRPM8 blocker (IC50 = 4.06 µM), showing an excellent metabolic stability and no cytotoxic effects. Finally, in silico characterisation of the derivatives showed no violation of the drug-likeness rules.


Assuntos
Desenho de Fármacos , Canais de Cátion TRPM/antagonistas & inibidores , Tiazóis/farmacologia , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Canais de Cátion TRPM/metabolismo , Tiazóis/síntese química , Tiazóis/química
5.
Pharmaceuticals (Basel) ; 14(6)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200917

RESUMO

Ketoprofen-l-lysine salt (KLS) is a widely used nonsteroidal anti-inflammatory drug. Here, we studied deeply the solid-state characteristics of KLS to possibly identify new polymorphic drugs. Conducting a polymorph screening study and combining conventional techniques with solid-state nuclear magnetic resonance, we identified, for the first time, a salt/cocrystal polymorphism of the ketoprofen (KET)-lysine (LYS) system, with the cocrystal, KET-LYS polymorph 1 (P1), being representative of commercial KLS, and the salt, KET-LYS polymorph 2 (P2), being a new polymorphic form of KLS. Interestingly, in vivo pharmacokinetics showed that the salt polymorph has significantly higher absorption and, thus, different pharmacokinetics compared to commercial KLS (cocrystal), laying the basis for the development of faster-release/acting KLS formulations. Moreover, intrinsic dissolution rate (IDR) and electronic tongue analyses showed that the salt has a higher IDR, a more bitter taste, and a different sensorial kinetics compared to the cocrystal, suggesting that different coating/flavoring processes should be envisioned for the new compound. Thus, the new KLS polymorphic form with its different physicochemical and pharmacokinetic characteristics can open the way to the development of a new KET-LYS polymorph drug that can emphasize the properties of commercial KLS for the treatment of acute inflammatory and painful conditions.

6.
Nutrients ; 12(11)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167391

RESUMO

BACKGROUND: Almond kernels contain phytochemicals with positive health effects in relation to heart disease, diabetes and obesity. Several studies have previously highlighted that almond cell wall encapsulation during digestion and particle size are factors associated with these benefits. In the present study, we have characterized almond oleosomes, natural oil droplets abundant in plants, and we have investigated their integrity during simulated gastrointestinal digestion. METHODS: Oleosomes were visualized on the almond seed surface by imaging mass spectrometry analysis, and then characterized in terms of droplet size distribution by dynamic light scattering and protein profile by liquid chromatography high-resolution tandem mass spectrometry analysis. RESULTS: The almond oleosomes' distribution remained monomodal after in vitro mastication, whereas gastric and duodenal digestion led to a bimodal distribution, albeit characterized mainly by a prevalent population with a droplet size decrease related to a rearrangement of the protein profile. Oleosins, structural proteins found in plant oil bodies, persisted unchanged during simulated mastication, with the appearance of new prunin isoforms after gastric and duodenal digestion. CONCLUSIONS: The rearrangement of the protein profile could limit lipid bioaccessibility. The data improve our understanding of the behavior of almond lipids during gastrointestinal digestion, and may have implications for energy intake and satiety imparted by almonds.


Assuntos
Digestão , Gotículas Lipídicas/química , Prunus dulcis/química , Duodeno/metabolismo , Eletroforese em Gel de Poliacrilamida , Humanos , Hidrodinâmica , Mastigação , Tamanho da Partícula , Proteínas de Plantas/análise , Sementes/química
7.
Molecules ; 24(21)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731437

RESUMO

A catalyst-free heterocyclization reaction of α-chloroglycinates with thiobenzamides or thioureas leading to 2,4-disubstituted-5-acylamino-1,3-thiazoles has been developed. The methodology provides straightforward access to valuable building blocks for pharmaceutically relevant compounds.


Assuntos
Ciclização , Estrutura Molecular , Tiazóis/síntese química , Catálise , Tiazóis/química
8.
ACS Omega ; 3(11): 14841-14848, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458153

RESUMO

We report herein a synthetic protocol for the preparation of 1,3-dibromo-1,1-difluoro-2-propanone, a new synthon used for the first time in a reaction with aromatic amines and sodium thiocyanate, leading to thiazoles which are useful candidates in drug discovery programs. The new synthon allows to introduce a bromodifluoromethyl group at the C4 of the thiazole, and it is amenable of further transformation such as the Br/F exchange useful in radiopharmaceutics. Application of the strategy to the preparation of a precursor of the biologically relevant DF2755Y is also reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...