Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(24): 11975-11981, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38079425

RESUMO

Multiple exciton physics in semiconductor nanocrystals play an important role in optoelectronic devices. This work investigates radially alloyed CdZnSe/CdS nanocrystals with suppressed Auger recombination due to the spatial separation of carriers, which also underpins their performance in optical gain and scintillation experiments. Due to suppressed Auger recombination, the biexciton lifetime is greater than 10 ns, much longer than most nanocrystals. The samples show optical gain, amplified spontaneous emission, and lasing at thresholds <2 excitons per particle. They also show broad gain bandwidth (>500 meV) encompassing 4 amplified spontaneous emission bands. Similarly enabled by slowed multiple exciton relaxation, the samples display strong performance in scintillating films under X-ray illumination. The CdZnSe/CdS samples have fast radioluminescence rise (<80 ps) and decay times (<5 ns), light yields up to 6700 photons·MeV-1, and the demonstrated capacity for incorporation into large area films for scintillation imaging.

2.
Nano Lett ; 22(23): 9470-9476, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36455210

RESUMO

Materials for studying biological interactions and for alternative energy applications are continuously under development. Semiconductor quantum dots are a major part of this landscape due to their tunable optoelectronic properties. Size-dependent quantum confinement effects have been utilized to create materials with tunable bandgaps and Auger recombination rates. Other mechanisms of electronic structural control are under investigation as not all of a material's characteristics are affected by quantum confinement. Demonstrated here is a new structure-property concept that imparts the ability to spatially localize electrons or holes within a core/shell heterostructure by tuning the charge carrier's kinetic energy on a parabolic potential energy surface. This charge carrier separation results in extended radiative lifetimes and in continuous emission at the single-nanoparticle level. These properties enable new applications for optics, facilitate novel approaches such as time-gated single-particle imaging, and create inroads for the development of other new advanced materials.


Assuntos
Nanopartículas , Pontos Quânticos , Pontos Quânticos/química , Nanopartículas/química , Semicondutores , Elétrons , Eletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...