Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(6): e0194585, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29874225

RESUMO

Vascular smooth muscle cells (SMCs), distinguished by the expression of the neuronal stem cell marker nestin, may represent stem cell-like progenitor cells in various organs including the testis. We investigated epididymal tissues of adult nestin-GFP mice, rats after Leydig cell depletion via ethane dimethane sulfonate (EDS), rats and mice during postnatal development and human tissues. By use of Clarity, a histochemical method to illustrate a three-dimensional picture, we could demonstrate nestin-GFP positive cells within the vascular network. We localized nestin in the epididymis in proliferating vascular SMCs by colocalization with both smooth muscle actin and PCNA, and it was distinct from CD31-positive endothelial cells. The same nestin localization was found in the human epididymis. However, nestin was not found in SMCs of the epididymal duct. Nestin expression is high during postnatal development of mouse and rat and down-regulated towards adulthood when testosterone levels increase. Nestin increases dramatically in rats after Leydig cell ablation with EDS and subsequently low testosterone levels. Interestingly, during this period, the expression of androgen receptor in the epididymis is low and increases until nestin reaches normal levels of adulthood. Here we show that nestin, a common marker for neuronal stem cells, is also expressed in the vasculature of the epididymis. Our results give new insights into the yet underestimated role of proliferating nestin-expressing vascular SMCs during postnatal development and repair of the epididymis.


Assuntos
Regulação da Expressão Gênica , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Nestina/biossíntese , Testosterona/deficiência , Animais , Epididimo/irrigação sanguínea , Epididimo/crescimento & desenvolvimento , Epididimo/patologia , Masculino , Camundongos , Camundongos Transgênicos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia
2.
Eur Respir J ; 47(3): 876-88, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26699726

RESUMO

Nestin, a well-known marker of neuronal stem cells, was recently suggested to characterise stem cell-like progenitors in non-neuronal structures during development and tissue repair. Integrating novel morphological approaches (CLARITY), we investigate whether nestin expression defines the proliferating cell population that essentially drives vascular remodelling during development of pulmonary hypertension.The role of nestin was investigated in lungs of nestin-GFP (green fluorescent protein) mice, models of pulmonary hypertension (rat: monocrotaline, SU5416/hypoxia; mouse: hypoxia), samples from pulmonary hypertension patients and human pulmonary vascular smooth muscle cells (VSMCs).Nestin was solely found in lung vasculature and localised to proliferating VSMCs, but not bronchial smooth muscle cells. Nestin was shown to affect cell number and was significantly enhanced in lungs early during development of pulmonary hypertension, correlating well with increased VSMC proliferation, expression of phosphorylated (activated) platelet-derived growth factor receptor ß and downregulation of the smooth muscle cell differentiation marker calponin. At later time points when pulmonary hypertension became clinically evident, nestin expression and proliferation returned to control levels. Increase of nestin-positive VSMCs was also found in human pulmonary hypertension, both in vessel media and neointima.Nestin expression seems to be obligatory for VSMC proliferation, and specifies lung vascular wall cells that drive remodelling and (re-)generation. Our data promise novel diagnostic tools and therapeutic targets for pulmonary hypertension.


Assuntos
Diferenciação Celular , Proliferação de Células , Hipertensão Pulmonar/metabolismo , Músculo Liso Vascular/metabolismo , Nestina/metabolismo , Remodelação Vascular , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Proteínas de Fluorescência Verde/análise , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Monocrotalina , Ratos , Ratos Sprague-Dawley , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Calponinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...