Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38339241

RESUMO

Skin cancers are a dominant type of cancer that impacts millions per year. Cancer is a heterogeneous disease triggered by the irreversible impairment of cellular homeostasis and function. In this study, we investigated the activity of 37 structurally diverse flavonoids to find potentially active substances using two melanoma cell lines: C32 and A375. First, the cytotoxic potential and DNA biosynthesis inhibition of flavonoids were tested to determine the most active compounds in cancer and normal cells. Second, the molecular mechanism of the anticancer activity of flavonoids was elucidated using Western blot and immunofluorescence analyses. Compounds 1, 6, 15, and 37 reduced the viability of A375 and C32 cell lines via the intrinsic and extrinsic pathways of apoptosis, whereas 16 and 17 acted in a higher degree via the inhibition of DNA biosynthesis. In our experiment, we demonstrated the anticancer activity of compound 15 (5,6-dihydroxyflavone) for the first time. The in vitro studies pointed out the importance of the flavonoid core in hydroxyl groups in the search for potential drugs for amelanotic melanoma.

2.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139112

RESUMO

For centuries, various species from the genus Cirsium have been utilized in traditional medicine worldwide. A number of ethnopharmacological reports have pointed out that Cirsium plants can be applied to diminish digestive problems. Among them, Cirsium palustre (L.) Scop. (Asteraceae) stands out as a promising herbal drug candidate because its constituents exhibit antimicrobial and antioxidant potential, as evidenced by ethnopharmacological reports. As a result, the species is particularly intriguing as an adjunctive therapy for functional gastrointestinal and motility disorders. Our research goal was to verify how the extracts, fractions, and main flavonoids of C. palustre affect colon contractility under ex vivo conditions. An alternative model with porcine-isolated colon specimens was used to identify the effects of C. palustre preparations and their primary flavonoids. LC-ESI-MS was utilized to evaluate the impacts of methanol (CP1), methanolic 50% (CP2), and aqueous (CP3) extracts as well as diethyl ether (CP4), ethyl acetate (CP5), and n-butanol (CP6) fractions. Additionally, the impacts of four flavonoids, apigenin (API), luteolin (LUT), apigenin 7-O-glucuronide (A7GLC), and chrysoeriol (CHRY), on spontaneous and acetylcholine-induced motility were assessed under isometric conditions. The results showed that C. palustre extracts, fractions, and their flavonoids exhibit potent motility-regulating effects on colonic smooth muscle. The motility-regulating effect was observed on spontaneous and acetylcholine-induced contractility. All extracts and fractions exhibited an enhancement of the spontaneous contractility of colonic smooth muscle. For acetylcholine-induced activity, CP1, CP2, and CP4 caused a spasmolytic effect, and CP5 and CP6 had a spasmodic effect. LUT and CHRY showed a spasmolytic effect in the case of spontaneous and acetylcholine-induced activity. In contrast, API and A7GLC showed a contractile effect in the case of spontaneous and pharmacologically induced activity. Considering the results obtained from the study, C. palustre could potentially provide benefits in the treatment of functional gastrointestinal disorders characterized by hypomotility and hypermotility.


Assuntos
Cirsium , Flavonoides , Flavonoides/farmacologia , Extratos Vegetais/farmacologia , Apigenina , Acetilcolina , Parassimpatolíticos , Colo
4.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894955

RESUMO

In this report, we discuss the effects of undescribed flavone derivatives, HZ4 and SP9, newly isolated from the aerial parts of Hottonia palustris L. and Scleranthus perennis L. on membranes. Interaction of flavonoids with lipid bilayers is important for medicinal applications. The experiments were performed with FTIR and NMR techniques on liposomes prepared from DPPC (dipalmitoylphosphatidylcholine) and EYPC (egg yolk phosphatidylcholine). The data showed that the examined polyphenols incorporate into the polar head group region of DPPC phospholipids at both 25 °C and 45 °C. At the lower temperature, a slight effect in the spectral region of the ester carbonyl group is observed. In contrast, at 45 °C, both compounds bring about the changes in the spectral regions attributed to antisymmetric and symmetric stretching vibrations of CH2 and CH3 moieties. Similarly, as in DPPC lipids, the tested compounds interact with the fingerprint region of the polar head groups of the EYPC lipids and cause its reorganization. The outcomes obtained by NMR analyses confirmed the localization of both flavonoids in the polar heads zone. Unraveled effects of HZ4 and SP9 in respect to lipid bilayers can partly determine their biological activities and are crucial for their usability in medicine as disease-preventing phytochemicals.


Assuntos
Flavonoides , Bicamadas Lipídicas , Bicamadas Lipídicas/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Lipossomos/química , Espectroscopia de Ressonância Magnética , 1,2-Dipalmitoilfosfatidilcolina/química
5.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685842

RESUMO

Specific changes in mucin-type O-glycosylation are common for many cancers, including gastric ones. The most typical alterations include incomplete synthesis of glycan structures, enhanced expression of truncated O-glycans (Tn, T antigens and their sialylated forms), and overexpression of fucosylation. Such altered glycans influence many cellular activities promoting cancer development. Tiliroside is a glycosidic dietary flavonoid with pharmacological properties, including anti-cancer. In this study, we aim to assess the effect of the combined action of anti-MUC1 and tiliroside on some cancer-related factors in AGS gastric cancer cells. Cancer cells were treated with 40, 80, and 160 µM tiliroside, 5 µg/mL anti-MUC1, and flavonoid together with mAb. Real-Time PCR, ELISA, and Western blotting were applied to examine MUC1 expression, specific, tumor-associated antigens, enzymes taking part in their formation, Gal-3, Akt, and NF-κB. MUC1 expression was significantly reduced by mAb action. The combined action of anti-MUC1 and tiliroside was more effective in comparison with monotherapy in the case of C1GalT1, ST3GalT1, FUT4, Gal-3, NF-κB, Akt mRNAs, and Tn antigen, as well as sialyl T antigen expression. The results of our study indicate that applied combined therapy may be a promising anti-gastric cancer strategy.


Assuntos
NF-kappa B , Neoplasias Gástricas , Humanos , Anticorpos Monoclonais/farmacologia , Flavonoides , Fucosiltransferases , Proteínas Proto-Oncogênicas c-akt , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/terapia , Mucina-1/imunologia
6.
Molecules ; 28(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37241952

RESUMO

Despite the progress of medicine, colorectal cancer has occupied one of the highest positions in the rankings of cancer morbidity and mortality for many years. Thus, alternative methods of its treatment are sought. One of the newer therapeutic strategies is immunotherapy based on NK cells (natural killers), which are the body's first line of defense against cancer. The aim of the study was to verify the possibility of using (1→3)-α-d-glucooligosaccharides (GOSs) obtained via acid hydrolysis of (1→3)-α-d-glucan from the fruiting body of Laetiporus sulphureus to improve the anticancer effect of NK-92 cells, with proven clinical utility, against selected human colon adenocarcinoma cell lines LS180 and HT-29. The study revealed that the investigated oligosaccharides significantly enhanced the ability of NK-92 cells to eliminate the examined colon cancer cells, mostly by an increase in their cytotoxic activity. The most significant effect was observed in LS180 and HT-29 cells exposed to a two-times higher quantity of NK cells activated by 500 µg/mL GOS, wherein NK-92 killing properties increased for 20.5% (p < 0.001) and 24.8% (p < 0.001), respectively. The beneficial impact of (1→3)-α-d-glucooligosaccharides on the anticancer properties of NK-92 suggests their use in colon cancer immunotherapy as adjuvants; however, the obtained data require further investigation and confirmation.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias do Colo , Humanos , Neoplasias do Colo/tratamento farmacológico , Adenocarcinoma/tratamento farmacológico , Células Matadoras Naturais , Células HT29 , Antineoplásicos/farmacologia
7.
Food Chem ; 417: 135928, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36933426

RESUMO

We investigated the modulating effect of α-(1→3)-glucooligosaccharides (GOS), i.e. a product of fungal α-(1→3)-d-glucan hydrolysis, on the gut microbiota composition. Mice were fed with a GOS-supplemented diet and two control diets for 21 days, and fecal samples were collected at 0, 1, and 3-week time points. The bacterial community composition was determined by 16S rRNA gene Illumina sequencing. The gut microbiota of the GOS-supplemented mice showed profound time-dependent changes in the taxonomic composition; however, we did not observe significant changes in α-diversity indices. The biggest number of genus abundance shifts after 1 week of the treatment was noticed between the group of the GOS-supplemented mice and the controls; however, the differences were still relevant after the 3-week treatment. The GOS-supplemented mice displayed higher abundance of Prevotella spp., with a concomitant decrease in the abundance of Escherichia-Shigella. Hence, GOS seems to be a promising candidate for a new prebiotic.


Assuntos
Microbioma Gastrointestinal , Prebióticos , Camundongos , Animais , Prebióticos/análise , Glucanos , RNA Ribossômico 16S/genética , Hidrólise , Fezes/microbiologia , Oligossacarídeos
8.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902263

RESUMO

Despite the common use of Potentilla L. species (Rosaceae) as herbal medicines, a number of species still remain unexplored. Thus, the present study is a continuation of a study evaluating the phytochemical and biological profiles of aqueous acetone extracts from selected Potentilla species. Altogether, 10 aqueous acetone extracts were obtained from the aerial parts of P. aurea (PAU7), P. erecta (PER7), P. hyparctica (PHY7), P. megalantha (PME7), P. nepalensis (PNE7), P. pensylvanica (PPE7), P. pulcherrima (PPU7), P. rigoi (PRI7), and P. thuringiaca (PTH7), leaves of P. fruticosa (PFR7), as well as from the underground parts of P. alba (PAL7r) and P. erecta (PER7r). The phytochemical evaluation consisted of selected colourimetric methods, including total phenolic (TPC), tannin (TTC), proanthocyanidin (TPrC), phenolic acid (TPAC), and flavonoid (TFC) contents, as well as determination of the qualitative secondary metabolite composition by the employment of LC-HRMS (liquid chromatography-high-resolution mass spectrometry) analysis. The biological assessment included an evaluation of the cytotoxicity and antiproliferative properties of the extracts against human colon epithelial cell line CCD841 CoN and human colon adenocarcinoma cell line LS180. The highest TPC, TTC, and TPAC were found in PER7r (326.28 and 269.79 mg gallic acid equivalents (GAE)/g extract and 263.54 mg caffeic acid equivalents (CAE)/g extract, respectively). The highest TPrC was found in PAL7r (72.63 mg catechin equivalents (CE)/g extract), and the highest TFC was found in PHY7 (113.29 mg rutin equivalents (RE)/g extract). The LC-HRMS analysis showed the presence of a total of 198 compounds, including agrimoniin, pedunculagin, astragalin, ellagic acid, and tiliroside. An examination of the anticancer properties revealed the highest decrease in colon cancer cell viability in response to PAL7r (IC50 = 82 µg/mL), while the strongest antiproliferative effect was observed in LS180 treated with PFR7 (IC50 = 50 µg/mL) and PAL7r (IC50 = 52 µg/mL). An LDH (lactate dehydrogenase) assay revealed that most of the extracts were not cytotoxic against colon epithelial cells. At the same time, the tested extracts for the whole range of concentrations damaged the membranes of colon cancer cells. The highest cytotoxicity was observed for PAL7r, which in concentrations from 25 to 250 µg/mL increased LDH levels by 145.7% and 479.0%, respectively. The previously and currently obtained results indicated that some aqueous acetone extracts from Potentilla species have anticancer potential and thus encourage further studies in order to develop a new efficient and safe therapeutic strategy for people who have been threatened by or suffered from colon cancer.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Potentilla , Humanos , Extratos Vegetais/química , Acetona , Flavonoides/análise , Fenóis/química , Compostos Fitoquímicos , Antioxidantes/química
9.
Metabolites ; 13(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36837876

RESUMO

Helichrysum italicum is a plant traditionally used for skin-related disorders that is becoming an increasingly popular ingredient in cosmetic products. In this work, a "green" ultrasound-assisted extraction method for H. italicum phenolics was developed using skin-friendly cyclodextrins (CDs). Extraction conditions needed for the greatest yield of target compounds (total phenolics, phenolic acids, and flavonoids) were calculated. The composition of the extracts was determined using LC-MS and spectrophotometric methods. Among the tested CDs, 2-hydroxylpropyl-beta-CD (HP-ß-CD) was the best suited for extraction of target phenolics and used to prepare two optimized extracts, OPT 1 (the extract with the highest phenolic acid content) and OPT 2 (the extract with the highest total phenol and flavonoid content). The extracts were prepared at 80 °C, using 0.089 g of plant material/g solvent (0.6 mmol of HP-ß-CD), with or without addition of 1.95% (w/w) lactic acid. The main metabolite in both extracts was 3,5-O-dicaffeoylquinic acid. It was found that the addition of lactic acid greatly contributes to the extraction of arzanol, a well-known anti-inflammatory agent. IC50 values of the anti-elastase (22.360 ± 0.125 µL extract/mL and 20.067 ± 0.975 for OPT-1 and OPT-2, respectively) and anti-collagenase (12.035 ± 1.029 µL extract/mL and 14.392 ± 0.705 µL extract/mL for OPT-1 and OPT-2, respectively) activities of the extracts surpassed those of the applied positive controls, namely ursolic and gallic acids. This activity deems the prepared extracts promising ingredients for natural cosmetics, appropriate for direct use in cosmetic products, removing the need for the evaporation of conventional solvents.

10.
Biochim Biophys Acta Biomembr ; 1865(4): 184142, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36848998

RESUMO

The aim of this study was to characterize, for the first time, the interactions, location, and influence of flavonoids isolated from aerial parts of Scleranthus perennis (Caryophyllaceae) and Hottonia palustris (Primulaceae) on the properties of model lipid membranes prepared from dipalmitoylphosphatidylcholine (DPPC) and egg yolk phosphatidylcholine (EYPC). The tested compounds incorporated into liposomes into the region of the polar heads or at the water/membrane interface of DPPC phospholipids. Spectral effects accompanying the presence of polyphenols revealed their effect on ester carbonyl groups apart from SP8. All polyphenols brought about reorganization of the polar zone of liposomes as it was observed by FTIR technique. Additionally, fluidization effect was noted in the region of symmetric and antisymmetric stretching vibrations of the CH2 and CH3 groups with exception to HZ2 and HZ3. Similarly, in EYPC liposomes, they interacted mainly with the regions of the choline heads of the lipids and had various effects on the carbonyl ester groups with exception to SP8. The region of polar head groups is restructured due to the presence of the additives in liposomes. The outcomes obtained using the NMR technique confirmed the locations of all of the tested compounds in the polar zone and indicated a flavonoid-dependent modifying effect towards lipid membranes. HZ1 and SP8 raised motional freedom in this region whereas opposite effect was revealed for HZ2 and HZ3. In the hydrophobic region restricted mobility was noted. In this report we discuss the mechanism of previously undescribed flavonoids in terms of their actions on membranes.


Assuntos
Caryophyllaceae , Primulaceae , Lipossomos/química , Flavonoides , Fosfolipídeos , Componentes Aéreos da Planta
11.
Artigo em Inglês | MEDLINE | ID: mdl-36767825

RESUMO

Due to a widespread occurrence of multidrug-resistant pathogenic strains of bacteria, there is an urgent need to look for antimicrobial substances, and honey with its antimicrobial properties is a very promising substance. In this study, we examined for the first time antimicrobial properties of novel varietal honeys, i.e., plum, rapeseed, Lime, Phacelia, honeydew, sunflower, willow, and multifloral-P (Prunus spinosa L.), multifloral-AP (Acer negundo L., Prunus spinosa L.), multifloral-Sa (Salix sp.), multifloral-Br (Brassica napus L.). Their antimicrobial activity was tested against bacteria (such as Escherichia coli, Bacillus circulans, Staphylococcus aureus, Pseudomonas aeruginosa), yeasts (such as Saccharomyces cerevisiae and Candida albicans) and mold fungi (such as Aspergillus niger). In tested honeys, phenolic acids constituted one of the most important groups of compounds with antimicrobial properties. Our study found phenolic acids to occur in greatest amount in honeydew honey (808.05 µg GAE/g), with the highest antifungal activity aiming at A. niger. It was caffeic acid that was discovered in the greatest amount (in comparison with all phenolic acids tested). It was found in the highest amount in such honeys as phacelia-356.72 µg/g, multifloral (MSa) and multifloral (MBr)-318.9 µg/g. The highest bactericidal activity against S. aureus was found in multifloral honeys MSa and MBr. Additionally, the highest amount of syringic acid and cinnamic acid was identified in rapeseed honey. Multifloral honey (MAP) showed the highest bactericidal activity against E. coli, and multifloral honey (MSa) against S. aureus. Additionally, multifloral honey (MBr) was effective against E. coli and S. aureus. Compounds in honeys, such as lysozyme-like and phenolic acids, i.e., coumaric, caffeic, cinnamic and syringic acids, played key roles in the health-benefit properties of honeys tested in our study.


Assuntos
Mel , Staphylococcus aureus , Testes de Sensibilidade Microbiana , Escherichia coli , Antibacterianos/farmacologia , Bactérias
12.
Planta Med ; 89(1): 19-29, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34715695

RESUMO

Potentilla alba is a valuable medicinal plant that has been highly praised even before its first appearance in herbal books; however, it has now been forgotten in Western Europe. Currently, this species is used in Eastern Europe as a remedy to treat dysentery and various thyroid gland dysfunctions. The present review summarizes the advances in the phytochemical, pharmacological, and toxicological research related to this plant species. Clinical trials that have been conducted to date support its traditional use for treating thyroid disorders, although its exact mechanism of action, bioavailability, and pharmacokinetics data are missing.


Assuntos
Potentilla , Glândula Tireoide , Fitoterapia , Rizoma , Europa (Continente) , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Compostos Fitoquímicos
13.
Phytomedicine ; 108: 154520, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36334386

RESUMO

BACKGROUND: The development of digital technologies and the evolution of open innovation approaches have enabled the creation of diverse virtual organizations and enterprises coordinating their activities primarily online. The open innovation platform titled "International Natural Product Sciences Taskforce" (INPST) was established in 2018, to bring together in collaborative environment individuals and organizations interested in natural product scientific research, and to empower their interactions by using digital communication tools. METHODS: In this work, we present a general overview of INPST activities and showcase the specific use of Twitter as a powerful networking tool that was used to host a one-week "2021 INPST Twitter Networking Event" (spanning from 31st May 2021 to 6th June 2021) based on the application of the Twitter hashtag #INPST. RESULTS AND CONCLUSION: The use of this hashtag during the networking event period was analyzed with Symplur Signals (https://www.symplur.com/), revealing a total of 6,036 tweets, shared by 686 users, which generated a total of 65,004,773 impressions (views of the respective tweets). This networking event's achieved high visibility and participation rate showcases a convincing example of how this social media platform can be used as a highly effective tool to host virtual Twitter-based international biomedical research events.


Assuntos
Produtos Biológicos , Mídias Sociais , Humanos
14.
Molecules ; 27(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36432136

RESUMO

Hottonia palustris L. is from the genus Hottonia (Primulaceae), and the understanding of its phytochemical and pharmacological properties is limited. In this study, the use of chromatographic techniques led to the isolation of a further eleven compounds, including three new flavonoids: 2',5-dihydroxyflavone 2'-O-ß-glucopyranoside, 5,6-dihydroxyflavone 6-O-(6"-O-glucopyranosyl)-ß-glucopyranoside (hottonioside A), and 4',5,7-trihydroxyflavone 7-O-(2"-O-ß-glucuronide)-ß-glucopyranoside. Their structures were determined using extensive 1D and 2D NMR data and mass spectrometry (HRMS). The qualitative assessment of the chemical composition of the investigated extracts and fractions was performed using the LC-HRMS technique. Furthermore, the antioxidant potential of extracts, fractions, and compounds and their ability to inhibit acetylcholinesterase were also evaluated. Thus, we may conclude that the observed biological effects are the result of the presence of many biologically active compounds, of which dibenzoylmethane is the most active. Therefore, H. palustris is a source of substances with desirable properties in the prevention and treatment of neurodegenerative diseases.


Assuntos
Flavonoides , Primulaceae , Flavonoides/farmacologia , Flavonoides/química , Antioxidantes/farmacologia , Acetilcolinesterase , Extratos Vegetais/farmacologia , Extratos Vegetais/química
15.
Front Pharmacol ; 13: 1027315, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249795

RESUMO

Cinquefoils have been widely used in local folk medicine in Europe and Asia to manage various gastrointestinal inflammations and/or infections, certain forms of cancer, thyroid gland disorders, and wound healing. In the present paper, acetone extracts from aerial parts of selected Potentilla species, namely P. alba (PAL7), P. argentea (PAR7), P. grandiflora (PGR7), P. norvegica (PN7), P. recta (PRE7), and the closely related Drymocalis rupestris (syn. P. rupestris) (PRU7), were analysed for their cytotoxicity and antiproliferative activities against human colon adenocarcinoma cell line LS180 and human colon epithelial cell line CCD841 CoN. Moreover, quantitative assessments of the total polyphenolic (TPC), total tannin (TTC), total proanthocyanidins (TPrC), total flavonoid (TFC), and total phenolic acid (TPAC) were conducted. The analysis of secondary metabolite composition was carried out by LC-PDA-HRMS. The highest TPC and TTC were found in PAR7 (339.72 and 246.92 mg gallic acid equivalents (GAE)/g extract, respectively) and PN7 (332.11 and 252.3 mg GAE/g extract, respectively). The highest TPrC, TFC, and TPAC levels were found for PAL7 (21.28 mg catechin equivalents (CAT)/g extract, 71.85 mg rutin equivalents (RE)/g extract, and 124.18 mg caffeic acid equivalents (CAE)/g extract, respectively). LC-PDA-HRMS analysis revealed the presence of 83 compounds, including brevifolincarboxylic acid, ellagic acid, pedunculagin, agrimoniin, chlorogenic acid, astragalin, and tiliroside. Moreover, the presence of tri-coumaroyl spermidine was demonstrated for the first time in the genus Potentilla. Results of the MTT assay revealed that all tested extracts decreased the viability of both cell lines; however, a markedly stronger effect was observed in the colon cancer cells. The highest selectivity was demonstrated by PAR7, which effectively inhibited the metabolic activity of LS180 cells (IC50 = 38 µg/ml), while at the same time causing the lowest unwanted effects in CCD841 CoN cells (IC50 = 1,134 µg/ml). BrdU assay revealed a significant decrease in DNA synthesis in both examined cell lines in response to all investigated extracts. It should be emphasized that the tested extracts had a stronger effect on colon cancer cells than normal colon cells, and the most significant antiproliferative properties were observed in the case of PAR7 (IC50 LS180 = 174 µg/ml) and PN7 (IC50 LS180 = 169 µg/ml). The results of LDH assay revealed that all tested extracts were not cytotoxic against normal colon epithelial cells, whereas in the cancer cells, all compounds significantly damaged cell membranes, and the observed effect was dose-dependent. The highest cytotoxicity was observed in LS180 cells in response to PAR7, which, in concentrations ranging from 25 to 250 µg/ml, increased LDH release by 110%-1,062%, respectively. Performed studies have revealed that all Potentilla species may be useful sources for anti-colorectal cancer agents; however, additional research is required to prove this definitively.

16.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232888

RESUMO

Scorzonera hispanica is an herbaceous perennial cultivated in Central and Southern Europe. This study aimed to qualitatively and quantitatively evaluate the composition of oil, extracts, and fractions (SH1-SH12) obtained from S. hispanica seeds. Furthermore, an evaluation of biological activities in breast cancer cell lines was also performed. GC-MS analysis revealed that the primary components of the seed oil (SH12) were fatty acids and ß-sitosterol. In the evaluation of extracts (SH1-SH3, SH8-SH10) and fractions (SH4-SH7, SH11) composition, the presence of apigenin, derivatives of p-coumaric and caffeic acids, was reported. In the biological assays, methanolic extract (SH1), diethyl ether (SH4), and chloroform (SH11) fractions exhibited cytotoxicity toward cells. The highest activity was observed for fatty acids- and 3,4-dimethoxycinnamate-rich SH11 (IC50: 399.18 µg/mL for MCF-7, 781.26 µg/mL for MDA-MB-231). SH11 was also observed to induce apoptosis in MCF-7 cells (52.4%). SH1, SH4, and SH11 attenuate signaling pathways and affect the expression of apoptosis-, autophagy-, and inflammation-related proteins. SH12 was non-toxic toward either cancer or normal cell lines in concentrations up to 1 mg/mL. The results suggest that S. hispanica seeds exhibit a wide range of potential uses as a source of oil and bioactive compounds for complementary therapy of breast cancer.


Assuntos
Neoplasias da Mama , Scorzonera , Apigenina , Neoplasias da Mama/tratamento farmacológico , Ácidos Cafeicos , Clorofórmio , Éter , Ácidos Graxos/farmacologia , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Células MCF-7 , Extratos Vegetais/farmacologia , Óleos de Plantas/farmacologia , Sementes
17.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36297307

RESUMO

Natural nitrogen heterocycles biotransformation has been extensively used to prepare synthetic drugs and explore the fate of therapeutic agents inside the body. Herein, the ability of filamentous fungi to biotransform boldine and berberine was investigated. Docking simulation studies of boldine, berberine and their metabolites on the target enzymes: telomerase (TERT) and human protein tyrosine phosphatase 1B (PTP-1B) were also performed to investigate the anticancer and antidiabetic potentials of compounds in silico. The biotransformation of boldine and berberine with Cunninghamella elegans NRRL 2310, Rhodotorula rubra NRRL y1592, Penicillium chrysogeneum ATCC 10002, Cunninghamella blackesleeana MR198 and Cunninghamella blackesleeana NRRL 1369 via demethylation, N- oxidation, glucosidation, oxidation and hydroxylation reactions produced seven metabolites, namely: 1,10-didesmethyl-boldine (1), laurolitsine (2), 1,10-didesmethyl-norboldine (3), boldine-9-O-ß-D-glucoside (4), tridesmethyl berberine (5), demethylene berberine (6), and lambertine (7). Primarily, the structures of the metabolites were established by one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) analyses and mass spectrometry. In silico molecular docking simulation of the metabolites of boldine and berberine to the proteins TERT and PTP-1B, respectively, revealed good binding MolDock scores comparable to boldine and berberine and favorable interactions with the catalytic sites of the proteins. In conclusion, this study presented promising biologically prepared nitrogen scaffolds (isoquinolines) of boldine and berberine.

18.
Metabolites ; 12(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36144196

RESUMO

Cisplatin (CP) is a powerful chemotherapeutic agent; however, its therapeutic use is restricted due to its nephrotoxicity. In this work, we profiled the phytoconstituents of Jasminum grandiflorum flower extract (JGF) using LC-MS/MS and explored the possible molecular mechanisms against acute renal failure through pharmacological network analysis. Furthermore, the possible molecular mechanisms of JGF against acute renal failure were verified in an in vivo nephrotoxicity model caused by cisplatin. LC-MS analysis furnished 26 secondary metabolites. Altogether, there were 112 total hit targets for the identified metabolites, among which 55 were potential consensus targets related to nephrotoxicity based on the network pharmacology approach. Upon narrowing the scope to acute renal failure, using the DisGeNET database, only 30 potential targets were determined. The computational pathway analysis illustrated that JGF might inhibit renal failure through PI3K-Akt, MAPK signaling pathway, and EGFR tyrosine kinase inhibitor resistance. This study was confirmed by in vivo experiment in which kidneys were collected for histopathology and gene expression of mitogen-activated protein kinase 4 (MKK4), MKK7, I-CAM 1, IL-6, and TNF receptor-associated factor 2 (TRAF2). The animal-administered cisplatin exhibited a substantial rise in the expression levels of the MMK4, MKK7, I CAM 1, and TRFA2 genes compared to the control group. To summarize, J. grandiflorum could be a potential source for new reno-protective agents. Further experiments are needed to confirm the obtained activities and determine the therapeutic dose and time.

19.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35955735

RESUMO

Abnormal glycosylation of cancer cells is considered a key factor of carcinogenesis related to growth, proliferation, migration and invasion of tumor cells. Many plant-based polyphenolic compounds reveal potential anti-cancer properties effecting cellular signaling systems. Herein, we assessed the effects of phenolic acid, p-coumaric acid and flavonoids such as kaempferol, astragalin or tiliroside on expression of selected cancer-related glycoforms and enzymes involved in their formation in AGS gastric cancer cells. The cells were treated with 80 and 160 µM of the compounds. RT-PCR, Western blotting and ELISA tests were performed to determine the influence of polyphenolics on analyzed factors. All the examined compounds inhibited the expression of MUC1, ST6GalNAcT2 and FUT4 mRNAs. C1GalT1, St3Gal-IV and FUT4 proteins as well as MUC1 domain, Tn and sialyl T antigen detected in cell lysates were also lowered. Both concentrations of kaempferol, astragalin and tiliroside also suppressed ppGalNAcT2 and C1GalT1 mRNAs. MUC1 cytoplasmic domain, sialyl Tn, T antigens in cell lysates and sialyl T in culture medium were inhibited only by kaempferol and tiliroside. Nuclear factor NF-κB mRNA expression decreased after treatment with both concentrations of kaempferol, astragalin and tiliroside. NF-κB protein expression was inhibited by kaempferol and tiliroside. The results indicate the rationality of application of examined polyphenolics as potential preventive agents against gastric cancer development.


Assuntos
Quempferóis , Neoplasias Gástricas , Ácidos Cumáricos , Flavonoides/farmacologia , Fucosiltransferases , Humanos , Quempferóis/farmacologia , NF-kappa B/metabolismo , Neoplasias Gástricas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...