Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Biomech ; 34(4): 336-341, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29431559

RESUMO

Estimation of muscle forces through musculoskeletal simulation is important in understanding human movement and injury. Unmatched filter frequencies used to low-pass filter marker and force platform data can create artifacts during inverse dynamics analysis, but their effects on muscle force calculations are unknown. The objective of this study was to determine the effects of filter cutoff frequency on simulation parameters and magnitudes of lower-extremity muscle and resultant joint contact forces during a high-impact maneuver. Eight participants performed a single-leg jump landing. Kinematics was captured with a 3D motion capture system, and ground reaction forces were recorded with a force platform. The marker and force platform data were filtered using 2 matched filter frequencies (10-10 Hz and 15-15 Hz) and 2 unmatched filter frequencies (10-50 Hz and 15-50 Hz). Musculoskeletal simulations using computed muscle control were performed in OpenSim. The results revealed significantly higher peak quadriceps (13%), hamstrings (48%), and gastrocnemius forces (69%) in the unmatched (10-50 Hz and 15-50 Hz) conditions than in the matched (10-10 Hz and 15-15 Hz) conditions (P < .05). Resultant joint contact forces and reserve (nonphysiologic) moments were similarly larger in the unmatched filter categories (P < .05). This study demonstrated that artifacts created from filtering with unmatched filter cutoffs result in altered muscle forces and dynamics that are not physiologic.


Assuntos
Perna (Membro) , Movimento/fisiologia , Músculo Esquelético/fisiologia , Adulto , Fenômenos Biomecânicos , Simulação por Computador , Feminino , Humanos , Perna (Membro)/fisiologia , Masculino , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...