Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Solid State Nucl Magn Reson ; 100: 63-69, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30965254

RESUMO

The development of new, high-frequency solid-state diode sources capable of operating at 263 GHz, together with an optimized stator design for improved millimeter-wave coupling to the NMR sample, have enabled low-power DNP experiments at 263 GHz/400 MHz. With 250 mW output power, signal enhancements as high as 120 are achieved on standard samples - approximately 1/3 of the maximal enhancement available with high-power gyrotrons under similar conditions. Diode-based sources have a number of advantages over vacuum tube devices: they emit a pure mode, can be rapidly frequency-swept over a wide range of frequencies, have reproducible output power over this range, and have excellent output stability. By virtue of their small size, low thermal footprint, and lack of facility requirements, solid-state diodes are also considerably cheaper to operate and maintain than high-power vacuum tube devices. In light of these features, and anticipating further improvements in terms of available output power, solid-state diodes are likely to find widespread use in DNP and contribute to further advances in the field.

2.
Phys Chem Chem Phys ; 12(22): 5850-60, 2010 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-20449524

RESUMO

Dynamic Nuclear Polarization (DNP) experiments transfer polarization from electron spins to nuclear spins with microwave irradiation of the electron spins for enhanced sensitivity in nuclear magnetic resonance (NMR) spectroscopy. Design and testing of a spectrometer for magic angle spinning (MAS) DNP experiments at 263 GHz microwave frequency, 400 MHz (1)H frequency is described. Microwaves are generated by a novel continuous-wave gyrotron, transmitted to the NMR probe via a transmission line, and irradiated on a 3.2 mm rotor for MAS DNP experiments. DNP signal enhancements of up to 80 have been measured at 95 K on urea and proline in water-glycerol with the biradical polarizing agent TOTAPOL. We characterize the experimental parameters affecting the DNP efficiency: the magnetic field dependence, temperature dependence and polarization build-up times, microwave power dependence, sample heating effects, and spinning frequency dependence of the DNP signal enhancement. Stable system operation, including DNP performance, is also demonstrated over a 36 h period.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Óxidos N-Cíclicos/química , Espectroscopia de Ressonância Magnética/instrumentação , Micro-Ondas , Prolina/química , Propanóis/química , Temperatura , Ureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...