Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Therm Biol ; 76: 126-138, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30143287

RESUMO

The insect cuticle serves a multitude of purposes, including: mechanical and thermal protection, water-repelling, acoustic signal absorption and coloration. The influence of cuticular structures on infrared radiation exchange and thermal balance is still largely unexplored. Here we report on the micro- and nanostructured setae covering the elytra of the longicorn beetle Rosalia alpina (Linnaeus, 1758) (Coleoptera: Cerambycidae) that help the insect to survive in hot, summer environments. In the visible part of the spectrum, scale-like setae, covering the black patches of the elytra, efficiently absorb light due to the radiation trap effect. In the infrared part of the spectrum, setae of the whole elytra significantly contribute to the radiative heat exchange. From the biological point of view, insect elytra facilitate camouflage, enable rapid heating to the optimum body temperature and prevent overheating by emitting excess thermal energy.


Assuntos
Exoesqueleto/química , Regulação da Temperatura Corporal , Besouros/anatomia & histologia , Animais , Temperatura Alta , Luz , Modelos Biológicos , Termografia
2.
Opt Express ; 26(11): 14143-14158, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29877457

RESUMO

Thermal cameras were constructed long ago, but working principles and complex technologies still limit their resolution, total number of pixels, and sensitivity. We address the problem of finding a new sensing mechanism surpassing existing limits of thermal radiation detection. Here we reveal the new mechanism on the butterfly wing, whose wing-scales act as pixels of an imaging array on a thermal detector. We observed that the tiniest features of a Morpho butterfly wing-scale match the mean free path of air molecules at atmospheric pressure - a condition when the radiation-induced heating produces an additional, thermophoretic force that deforms the wing-scales. The resulting deformation field was imaged holographically with mK temperature sensitivity and 200 Hz response speed. By imitating butterfly wing-scales, the effect can be further amplified through a suitable choice of material, working pressure, sensor design, and detection method. The technique is universally applicable to any nano-patterned, micro-scale system in other spectral ranges, such as UV and terahertz.


Assuntos
Técnicas Biossensoriais/instrumentação , Borboletas/fisiologia , Raios Infravermelhos , Fotografação/instrumentação , Asas de Animais/fisiologia , Animais , Desenho de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...