Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 5(25): 15290-15300, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32637802

RESUMO

Production of environmentally friendly multitasking materials is among the urgent challenges of chemistry and ecotechnology. The current research paper describes the synthesis of amino-/silica and amino-/phenyl-/silica particles using a one-pot sol-gel technique. CHNS analysis and titration demonstrated a high content of functional groups, while scanning electron microscopy revealed their spherical form and ∼200 nm in size. X-ray photoelectron spectroscopy data testified that hydrophobic groups reduced the number of water molecules and protonated amino groups on the surface, increasing the portion of free amino groups. The complexation with Cu(II) cations was used to analyze the sorption capacity and reactivity of the aminopropyl groups and to enhance the antimicrobial action of the samples. Antibacterial activities of suspensions of aminosilica particles and their derivative forms containing adsorbed copper(II) ions were assayed against Gram-positive (Staphylococcus aureus ATCC 25923) and Gram-negative bacteria (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853). Meanwhile, antifungal activity was tested against fungi (Candida albicans UCM Y-690). According to zeta potential measurements, its value could be depended on the suspension concentration, and it was demonstrated that the positively charged suspension had higher antibacterial efficiency. SiO2/-C6H5/-NH2 + Cu(II) sample's water suspension (1%) showed complete growth inhibition of the bacterial culture on the solid medium. The antimicrobial activity could be due to occurrence of multiple and nonspecific interactions between the particle surfaces and the surface layers of bacteria or fungi.

2.
Beilstein J Nanotechnol ; 8: 334-347, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28243572

RESUMO

Spherical silica particles with bifunctional (≡Si(CH2)3NH2/≡SiCH3, ≡Si(CH2)3NH2/≡Si(CH2)2(CF2)5CF3) surface layers were produced by a one-step approach using a modified Stöber method in three-component alkoxysilane systems, resulting in greatly increased contents of functional components. The content of functional groups and thermal stability of the surface layers were analyzed by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, and 13C and 29Si solid-state NMR spectroscopy revealing their composition and organization. The fine chemical structure of the surface in the produced hybrid adsorbent particles and the ligand distribution were further investigated by electron paramagnetic resonance (EPR) and electron spectroscopy of diffuse reflectance (ESDR) spectroscopy using Cu2+ ion coordination as a probe. The composition and structure of the emerging surface complexes were determined and used to provide an insight into the molecular structure of the surfaces. It was demonstrated that the introduction of short hydrophobic (methyl) groups improves the kinetic characteristics of the samples during the sorption of copper(II) ions and promotes fixation of aminopropyl groups on the surface of silica microspheres. The introduction of long hydrophobic (perfluoroctyl) groups changes the nature of the surface, where they are arranged in alternately hydrophobic/hydrophilic patches. This makes the aminopropyl groups huddled and less active in the sorption of metal cations. The size and aggregation/morphology of obtained particles was optimized controlling the synthesis conditions, such as concentrations of reactants, basicity of the medium, and the process temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...