Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gen Appl Microbiol ; 69(2): 91-101, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37357393

RESUMO

Thermus thermophilus biosynthesizes lysine via α-aminoadipate as an intermediate using the amino-group carrier protein, LysW, to transfer the attached α-aminoadipate and its derivatives to biosynthetic enzymes. A gene named lysV, which encodes a hypothetical protein similar to LysW, is present in the lysine biosynthetic gene cluster. Although the knockout of lysV did not affect lysine auxotrophy, lysV homologs are conserved in the lysine biosynthetic gene clusters of microorganisms belonging to the phylum Deinococcus-Thermus, suggesting a functional role for LysV in lysine biosynthesis. Pulldown assays and crosslinking experiments detected interactions between LysV and all of the biosynthetic enzymes requiring LysW for reactions, and the activities of most of all these enzymes were affected by LysV. These results suggest that LysV modulates the lysine biosynthesis through protein-protein interactions.


Assuntos
Lisina , Thermus thermophilus , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , Lisina/genética , Lisina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ligação Proteica , Família Multigênica
2.
ACS Chem Biol ; 18(2): 385-395, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36669120

RESUMO

(2,6)-Diamino-(5,7)-dihydroxyheptanoic acid (DADH), a non-proteinogenic amino acid, is converted to 1-azabicyclo[3.1.0]hexane ring-containing amino acids that are subsequently incorporated into ficellomycin and vazabitide A. The present study revealed that the sugar aminotransferase-like enzymes Fic25 and Vzb9, with a high amino acid sequence identity (56%) to each other, synthesized stereoisomers of DADH with (6S) and (6R) configurations, respectively. The crystal structure of the Fic25 complex with a PLP-(6S)-N2-acetyl-DADH adduct indicated that Asn45 and Gln197 (Asn205 and Ala53 in Vzb9) were located at positions that affected the stereochemistry of DADH being synthesized. A modeling study suggested that amino acid substitutions between Fic25 and Vzb9 allowed the enzymes to bind to the substrate with almost 180° rotation in the C5-C7 portions of the DADH molecules, accompanied by a concomitant shift in their C1-C4 portions. In support of this result, the replacement of two corresponding residues in Fic25 and Vzb9 increased (6R) and (6S) stereoselectivities, respectively. The different stereochemistry at C6 of DADH resulted in a different stereochemistry/orientation of the aziridine portion of the 1-azabicyclo[3.1.0]hexane ring, which plays a crucial role in biological activity, between ficellomycin and vazabitide A. A phylogenic analysis suggested that Fic25 and Vzb9 evolved from sugar aminotransferases to produce unusual building blocks for expanding the structural diversity of secondary metabolites.


Assuntos
Aminoácidos , Produtos Biológicos , Aminoácidos/química , Transaminases/metabolismo , Hexanos , Açúcares , Estereoisomerismo
3.
J Am Chem Soc ; 144(35): 16164-16170, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35998388

RESUMO

Natural products containing an aziridine ring, such as mitomycin C and azinomycin B, exhibit antitumor activities by alkylating DNA via their aziridine rings; however, the biosynthetic mechanisms underlying the formation of these rings have not yet been elucidated. We herein investigated the biosynthesis of vazabitide A, the structure of which is similar to that of azinomycin B, and demonstrated that Vzb10/11, with no similarities to known enzymes, catalyzed the formation of the aziridine ring via sulfate elimination. To elucidate the detailed reaction mechanism, crystallization of Vzb10/11 and the homologous enzyme, AziU3/U2, in the biosynthesis of azinomycin B was attempted, and the structure of AziU3/U2, which had a new protein fold overall, was successfully determined. The structural analysis revealed that these enzymes adjusted the dihedral angle between the amino group and the adjacent sulfate group of the substrate to almost 180° and enhanced the nucleophilicity of the C6-amino group temporarily, facilitating the SN2-like reaction to form the aziridine ring. The present study reports for the first time the molecular basis for aziridine ring formation.


Assuntos
Aziridinas , Sulfatos , Aziridinas/química , DNA/química , Mitomicina
4.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33741620

RESUMO

A novel gene cluster involved in the degradation of lignin-derived monoaromatics such as p-hydroxybenzoate, vanillate, and ferulate has been identified in the thermophilic nitrate reducer Thermus oshimai JL-2. Based on conserved domain analyses and metabolic pathway mapping, the cluster was classified into upper- and peripheral-pathway operons. The upper-pathway genes, responsible for the degradation of p-hydroxybenzoate and vanillate, are located on a 0.27-Mb plasmid, whereas the peripheral-pathway genes, responsible for the transformation of ferulate, are spread throughout the plasmid and the chromosome. In addition, a lower-pathway operon was also identified in the plasmid that corresponds to the meta-cleavage pathway of catechol. Spectrophotometric and gene induction data suggest that the upper and lower operons are induced by p-hydroxybenzoate, which the strain can degrade completely within 4 days of incubation, whereas the peripheral genes are expressed constitutively. The upper degradation pathway follows a less common route, proceeding via the decarboxylation of protocatechuate to form catechol, and involves a novel thermostable γ-carboxymuconolactone decarboxylase homolog, identified as protocatechuate decarboxylase based on gene deletion experiments. This gene cluster is conserved in only a few members of the Thermales and shows traces of vertical expansion of catabolic pathways in these organisms toward lignoaromatics.IMPORTANCE High-temperature steam treatment of lignocellulosic biomass during the extraction of cellulose and hemicellulose fractions leads to the release of a wide array of lignin-derived aromatics into the natural ecosystem, some of which can have detrimental effects on the environment. Not only will identifying organisms capable of using such aromatics aid in environmental cleanup, but thermostable enzymes, if characterized, can also be used for efficient lignin valorization. However, no thermophilic lignin degraders have been reported thus far. The present study reports T. oshimai JL-2 as a thermophilic bacterium with the potential to use lignin-derived aromatics. The identification of a novel thermostable protocatechuate decarboxylase gene in the strain further adds to its significance, as such an enzyme can be efficiently used in the biosynthesis of cis,cis-muconate, an important intermediate in the commercial production of plastics.


Assuntos
Ácidos Cumáricos/metabolismo , Lignina/metabolismo , Parabenos/metabolismo , Thermus/metabolismo , Ácido Vanílico/metabolismo , Genes Bacterianos , Família Multigênica , Thermus/genética
5.
FEBS J ; 288(6): 1975-1988, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32897601

RESUMO

Homocitrate synthase (HCS) catalyzes the aldol condensation of α-ketoglutarate and acetyl coenzyme A to form homocitrate, which is the first committed step of lysine biosynthesis through the α-aminoadipate pathway in yeast, fungi, and some prokaryotes. We determined the crystal structure of a truncated form of HCS from a hyperthermophilic acidophilic archaeon, Sulfolobus acidocaldarius, which lacks the RAM (Regulation of amino acid metabolism) domain at the C terminus serving as the regulatory domain for the feedback inhibition by lysine, in complex with α-ketoglutarate, Mg2+ , and CoA. This structure coupled with mutational analysis revealed that a subdomain, subdomain II, connecting the N-terminal catalytic domain and C-terminal RAM domain is involved in the recognition of acetyl-CoA. This is the first structural evidence of the function of subdomain II in the related enzyme family, which will lead to a better understanding of the catalytic mechanism of HCS. DATABASES: Structural data are available in the RCSB PDB database under the accession number 6KTQ.


Assuntos
Acetilcoenzima A/metabolismo , Proteínas Arqueais/metabolismo , Ácidos Cetoglutáricos/metabolismo , Oxo-Ácido-Liases/metabolismo , Sulfolobus acidocaldarius/enzimologia , Acetilcoenzima A/química , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Sítios de Ligação/genética , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Ácidos Cetoglutáricos/química , Cinética , Magnésio/metabolismo , Modelos Moleculares , Mutação , Oxo-Ácido-Liases/química , Oxo-Ácido-Liases/genética , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Sulfolobus acidocaldarius/genética , Ácidos Tricarboxílicos/química , Ácidos Tricarboxílicos/metabolismo
6.
Microbiologyopen ; 9(10): e1113, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32864855

RESUMO

Pyruvate dehydrogenase (PDH) and 2-oxoglutarate dehydrogenase (ODH) are critical enzymes in central carbon metabolism. In Corynebacterium glutamicum, an unusual hybrid complex consisting of CgE1p (thiamine diphosphate-dependent pyruvate dehydrogenase, AceE), CgE2 (dihydrolipoamide acetyltransferase, AceF), CgE3 (dihydrolipoamide dehydrogenase, Lpd), and CgE1o (thiamine diphosphate-dependent 2-oxoglutarate dehydrogenase, OdhA) has been suggested. Here, we elucidated that the PDH-ODH hybrid complex in C. glutamicum probably consists of six copies of CgE2 in its core, which is rather compact compared with PDH and ODH in other microorganisms that have twenty-four copies of E2. We found that CgE2 formed a stable complex with CgE3 (CgE2-E3 subcomplex) in vitro, hypothetically comprised of two CgE2 trimers and four CgE3 dimers. We also found that CgE1o exists mainly as a hexamer in solution and is ready to form an active ODH complex when mixed with the CgE2-E3 subcomplex. Our in vitro reconstituted system showed CgE1p- and CgE1o-dependent inhibition of ODH and PDH, respectively, actively supporting the formation of the hybrid complex, in which both CgE1p and CgE1o associate with a single CgE2-E3. In gel filtration chromatography, all the subunits of CgODH were eluted in the same fraction, whereas CgE1p was eluted separately from CgE2-E3, suggesting a weak association of CgE1p with CgE2 compared with that of CgE1o. This study revealed the unique molecular architecture of the hybrid complex from C. glutamicum and the compact-sized complex would provide an advantage to determine the whole structure of the unusual hybrid complex.


Assuntos
Proteínas de Bactérias/química , Corynebacterium glutamicum/enzimologia , Complexo Cetoglutarato Desidrogenase/química , Complexo Piruvato Desidrogenase/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/química , Corynebacterium glutamicum/genética , Complexo Cetoglutarato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/metabolismo , Cinética , Ligação Proteica , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo
7.
Nat Chem Biol ; 16(4): 415-422, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32042199

RESUMO

In biotin biosynthesis, the conversion of pimeloyl intermediates to biotin is catalyzed by a universal set of four enzymes: BioF, BioA, BioD and BioB. We found that the gene homologous to bioA, the product of which is involved in the conversion of 8-amino-7-oxononanoate (AON) to 7,8-diaminononanoate (DAN), is missing in the genome of the cyanobacterium Synechocystis sp. PCC 6803. We provide structural and biochemical evidence showing that a novel dehydrogenase, BioU, is involved in biotin biosynthesis and functionally replaces BioA. This enzyme catalyzes three reactions: formation of covalent linkage with AON to yield a BioU-DAN conjugate at the ε-amino group of Lys124 of BioU using NAD(P)H, carboxylation of the conjugate to form BioU-DAN-carbamic acid, and release of DAN-carbamic acid using NAD(P)+. In this biosynthetic pathway, BioU is a suicide enzyme that loses the Lys124 amino group after a single round of reaction.


Assuntos
Biotina/biossíntese , Oxirredutases/ultraestrutura , Synechocystis/metabolismo , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Diamino Aminoácidos/química , Diamino Aminoácidos/metabolismo , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Biotina/metabolismo , Catálise , Clonagem Molecular , Cianobactérias/genética , Cianobactérias/metabolismo , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Genes Bacterianos , Oxirredutases/metabolismo , Synechocystis/genética , Transaminases/metabolismo
8.
FEBS Lett ; 594(1): 126-134, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31330039

RESUMO

The hyperthermophilic archaeon, Sulfolobus, synthesizes lysine via the α-aminoadipate pathway; however, the gene encoding homocitrate synthase, the enzyme responsible for the first and committed step of the pathway, has not yet been identified. In the present study, we identified saci_1304 as the gene encoding a novel type of homocitrate synthase fused with a Regulation of Amino acid Metabolism (RAM) domain at the C terminus in Sulfolobus acidocaldarius. Enzymatic characterization revealed that Sulfolobus homocitrate synthase was inhibited by lysine; however, the mutant enzyme lacking the RAM domain was insensitive to inhibition by lysine. The present results indicated that the RAM domain is responsible for enzyme inhibition.


Assuntos
Proteínas Arqueais/metabolismo , Oxo-Ácido-Liases/metabolismo , Sulfolobus acidocaldarius/enzimologia , Proteínas Arqueais/química , Proteínas Arqueais/genética , Sítios de Ligação , Lisina/metabolismo , Mutação , Oxo-Ácido-Liases/química , Oxo-Ácido-Liases/genética , Ligação Proteica
9.
Angew Chem Int Ed Engl ; 58(38): 13349-13353, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31350791

RESUMO

Carquinostatin A (CQS), a potent neuroprotective substance, is a unique carbazole alkaloid with both an ortho-quinone function and an isoprenoid moiety. We identified the entire gene cluster responsible for CQS biosynthesis in Streptomyces exfoliatus through heterologous production of CQS and gene deletion. Biochemical characterization of seven CQS biosynthetic gene products (CqsB1-7) established the total biosynthetic pathway of CQS. Reconstitution of CqsB1 and CqsB2 showed that the synthesis of the carbazole skeleton involves CqsB1-catalyzed decarboxylative condensation of an α-hydroxyl-ß-keto acid intermediate with 3-hydroxybutyryl-ACP followed by CqsB2-catalyzed oxidative cyclization. Based on crystal structures and mutagenesis-based biochemical assays, a detailed mechanism for the unique deprotonation-initiated cyclization catalyzed by CqsB2 is proposed. Finally, analysis of the substrate specificity of the biosynthetic enzymes led to the production of novel carbazoles.


Assuntos
Alcaloides/química , Carbazóis/síntese química , Streptomyces/química , Ciclização , Humanos
10.
J Bacteriol ; 201(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31036724

RESUMO

Glutamate dehydrogenase (GDH) from a thermophilic bacterium, Thermus thermophilus, is composed of two heterologous subunits, GdhA and GdhB. In the heterocomplex, GdhB acts as the catalytic subunit, whereas GdhA lacks enzymatic activity and acts as the regulatory subunit for activation by leucine. In the present study, we performed a pulldown assay using recombinant T. thermophilus, producing GdhA fused with a His tag at the N terminus, and found that TTC1249 (APRTh), which is annotated as adenine phosphoribosyltransferase but lacks the enzymatic activity, was copurified with GdhA. When GdhA, GdhB, and APRTh were coproduced in Escherichia coli cells, they were purified as a ternary complex. The ternary complex exhibited GDH activity that was activated by leucine, as observed for the GdhA-GdhB binary complex. Furthermore, AMP activated GDH activity of the ternary complex, whereas such activation was not observed for the GdhA-GdhB binary complex. This suggests that APRTh mediates the allosteric activation of GDH by AMP. The present study demonstrates the presence of complicated regulatory mechanisms of GDH mediated by multiple compounds to control the carbon-nitrogen balance in bacterial cells.IMPORTANCE GDH, which catalyzes the synthesis and degradation of glutamate using NAD(P)(H), is a widely distributed enzyme among all domains of life. Mammalian GDH is regulated allosterically by multiple metabolites, in which the antenna helix plays a key role to transmit the allosteric signals. In contrast, bacterial GDH was believed not to be regulated allosterically because it lacks the antenna helix. We previously reported that GDH from Thermus thermophilus (TtGDH), which is composed of two heterologous subunits, is activated by leucine. In the present study, we found that AMP activates TtGDH using a catalytically inactive APRTh as the sensory subunit. This suggests that T. thermophilus possesses a complicated regulatory mechanism of GDH to control carbon and nitrogen metabolism.


Assuntos
Adenina Fosforribosiltransferase/metabolismo , Monofosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Glutamato Desidrogenase/metabolismo , Leucina/metabolismo , Thermus thermophilus/enzimologia , Adenina Fosforribosiltransferase/genética , Proteínas de Bactérias/genética , Catálise , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Glutamato Desidrogenase/genética , Ácido Glutâmico/metabolismo , Thermus thermophilus/genética
11.
FEBS J ; 286(4): 726-736, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30430741

RESUMO

Studying the diversity of extant metabolisms and enzymes, especially those involved in the biosynthesis of primary metabolites including amino acids, is important to shed light on the evolution of life. Many organisms synthesize serine from phosphoserine via a reaction catalyzed by phosphoserine phosphatase (PSP). Two types of PSP, belonging to distinct protein superfamilies, have been reported. Genomic analyses have revealed that the thermophilic bacterium Thermus thermophilus lacks both homologs while still having the ability to synthesize serine. Here, we purified a protein from T. thermophilus which we biochemically identified as a PSP. A knockout mutant of the responsible gene (TT_C1695) was constructed, which showed serine auxotrophy. These results indicated the involvement of this gene in serine biosynthesis in T. thermophilus. TT_C1695 was originally annotated as a protein with unknown function belonging to the haloacid dehalogenase-like hydrolase (HAD) superfamily. The HAD superfamily, which comprises phosphatases against a variety of substrates, includes also the classical PSP as a member. However, the amino acid sequence of the TT_C1695 was more similar to phosphatases acting on non-phosphoserine substrates than classical PSP; therefore, a BLASTP search and phylogenetic analysis failed to predict TT_C1695 as a PSP. Our results strongly suggest that the T. thermophilus PSP and classical PSP evolved specificity for phosphoserine independently. ENZYMES: Phosphoserine phosphatase (PSP; EC 3.1.3.3); serine hydroxymethyltransferase (EC 2.1.2.1); 3-phosphoglycerate dehydrogenase (EC 1.1.1.95); 3-phosphoserine aminotransferase (EC 2.6.1.52).


Assuntos
Proteínas de Bactérias/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Serina/biossíntese , Thermus thermophilus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Monoéster Fosfórico Hidrolases/genética , Filogenia , Homologia de Sequência , Transdução de Sinais
12.
J Am Chem Soc ; 140(29): 9083-9086, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30001119

RESUMO

Recent studies described several different routes that facilitate nitrogen-nitrogen bond formation in natural product biosynthesis. We report herein the identification of unprecedented machinery for hydrazine formation involved in the biosynthesis of s56-p1, a dipeptide natural product with a unique hydrazone unit. The gene cassette comprising this machinery is widespread across several bacterial phyla, highlighting the overlooked potential of bacteria to synthesize hydrazine.


Assuntos
Bactérias/genética , Dipeptídeos/biossíntese , Hidrazonas/metabolismo , Família Multigênica , Sequência de Aminoácidos , Oxigenases de Função Mista/genética , Transferases/genética
13.
Sci Rep ; 8(1): 2473, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29410538

RESUMO

The cyclization mechanisms involved in the biosynthesis of sesterterpenes are not fully understood. For example, there are two plausible reaction pathways for sesterfisherol biosynthesis, which differ in the order of ring cyclization: A-D-B/C (Path a) and A-B-C/D (Path b). It is difficult to capture intermediates of terpene cyclization, which is a complex, domino-type reaction, and so here we employed a combination of experimental and computational methods. Density functional theory calculations revealed unexpected intermediates and transition states, and implied that C-H···π interaction between a carbocation intermediate and an aromatic residue of sesterfisherol synthase (NfSS) plays a critical role, serving to accelerate the 1,2-H shift (thereby preventing triquinane carbocation formation) and to protect reactive carbocation intermediates from bases such as pyrophosphate or water in the active site. Site-directed mutagenesis of NfSS guided by docking simulations confirmed that phenylalanine F191 is a critical amino acid residue for sesterfisherol synthase, as the F191A mutant of NfSS produces novel sesterterpenes, but not sesterfisherol. Although both pathways are energetically viable, on the basis of our computational and experimental results, NfSS-mediated sesterfisherol biosynthesis appears to proceed via Path a. These findings may also provide new insight into the cyclization mechanisms in related sesterterpene synthases.


Assuntos
Alanina/química , Alquil e Aril Transferases/química , Ascomicetos/química , Proteínas Fúngicas/química , Fenilalanina/química , Sesterterpenos/química , Alanina/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Ascomicetos/enzimologia , Domínio Catalítico , Clonagem Molecular , Ciclização , Difosfatos/química , Difosfatos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Fenilalanina/metabolismo , Teoria Quântica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sesterterpenos/biossíntese , Termodinâmica , Água/química , Água/metabolismo
14.
Angew Chem Int Ed Engl ; 56(47): 14913-14917, 2017 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-28922556

RESUMO

We report the three-dimensional structure of cyclolavandulyl diphosphate (CLPP) synthase (CLDS), which consecutively catalyzes the condensation of two molecules of dimethylallyl diphosphate (DMAPP) followed by cyclization to form a cyclic monoterpene, CLPP. The structures of apo-CLDS and CLDS in complex with Tris, pyrophosphate, and Mg2+ ion were refined at 2.00 Šresolution and 1.73 Šresolution, respectively. CLDS adopts a typical fold for cis-prenyl synthases and forms a homo-dimeric structure. An in vitro reaction using a regiospecifically 2 H-substituted DMAPP substrate revealed the intramolecular proton transfer mechanism of the CLDS reaction. The CLDS structure and structure-based mutagenesis provide mechanistic insights into this unprecedented terpene synthase. The combination of structural and mechanistic insights advances the knowledge of intricate terpene synthase-catalyzed reactions.

15.
Biosci Biotechnol Biochem ; 81(11): 2050-2061, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28840778

RESUMO

Amino acids are essential components in all organisms because they are building blocks of proteins. They are also produced industrially and used for various purposes. For example, L-glutamate is used as the component of "umami" taste and lysine has been used as livestock feed. Recently, many kinds of amino acids have attracted attention as biological regulators and are used for a healthy life. Thus, to clarify the mechanism of how amino acids are biosynthesized and how they work as biological regulators will lead to further effective utilization of them. Here, I review the leucine-induced-allosteric activation of glutamate dehydrogenase (GDH) from Thermus thermophilus and the relationship with the allosteric regulation of GDH from mammals. Next, I describe structural insights into the efficient production of L-glutamate by GDH from an excellent L-glutamate producer, Corynebacterium glutamicum. Finally, I review the structural biology of lysine biosynthesis of thermophilic bacterium and archaea.


Assuntos
Aminoácidos/metabolismo , Archaea/enzimologia , Bactérias/enzimologia , Glutamato Desidrogenase/química , Glutamato Desidrogenase/metabolismo , Regulação Alostérica , Animais , Archaea/metabolismo , Bactérias/metabolismo , Humanos
16.
Biochem Biophys Res Commun ; 491(2): 409-415, 2017 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-28720495

RESUMO

LysK is an M20 peptidase family enzyme that hydrolyzes the isopeptide bond between the carrier protein LysW and lysine in order to release lysine, which is the last step of lysine biosynthesis in Thermus thermophilus. In the present study, we determined the crystal structure of LysK in complex with lysine at a resolution of 2.4 Å. The α-amino group of the bound lysine was oriented toward the catalytic center, which was composed of the residues coordinating divalent metal ions for the hydrolysis of the isopeptide bond. An 11 Å-long path was observed from the active site binding lysine to the protein surface, which may be responsible for recognizing the C-terminal extension domain of LysW with the conserved EDWGE sequence. A positively-charged surface region was detected around the exit of the path, similar to other lysine biosynthetic enzymes using LysW as the carrier protein. Mutational studies of the surface residues provided a plausible model for the electrostatic interaction with LysW.


Assuntos
Amidoidrolases/química , Proteínas de Bactérias/química , Proteínas de Transporte/química , Lisina/biossíntese , Thermus thermophilus/química , Amidoidrolases/genética , Amidoidrolases/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Clonagem Molecular , Sequência Conservada , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Cinética , Lisina/química , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Especificidade por Substrato , Thermus thermophilus/enzimologia
17.
ACS Chem Biol ; 12(8): 2209-2215, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28727444

RESUMO

Fosfomycin is a wide-spectrum phosphonate antibiotic that is used clinically to treat cystitis, tympanitis, etc. Its biosynthesis starts with the formation of a carbon-phosphorus bond catalyzed by the phosphoenolpyruvate phosphomutase Fom1. We identified an additional cytidylyltransferase (CyTase) domain at the Fom1 N-terminus in addition to the phosphoenolpyruvate phosphomutase domain at the Fom1 C-terminus. Here, we demonstrate that Fom1 is bifunctional and that the Fom1 CyTase domain catalyzes the cytidylylation of the 2-hydroxyethylphosphonate (HEP) intermediate to produce cytidylyl-HEP. On the basis of this new function of Fom1, we propose a revised fosfomycin biosynthetic pathway that involves the transient CMP-conjugated intermediate. The identification of a biosynthetic mechanism via such transient cytidylylation of a biosynthetic intermediate fundamentally advances the understanding of phosphonate biosynthesis in nature. The crystal structure of the cytidylyl-HEP-bound CyTase domain provides a basis for the substrate specificity and reveals unique catalytic elements not found in other members of the CyTase family.


Assuntos
Monofosfato de Citidina/metabolismo , Fosfomicina/biossíntese , Modelos Biológicos , Organofosfonatos/metabolismo , Domínio Catalítico , Cristalização , Monofosfato de Citidina/química , Fosfomicina/química , Modelos Moleculares , Organofosfonatos/química , Domínios Proteicos , Especificidade por Substrato
18.
ACS Chem Biol ; 12(6): 1621-1628, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28463490

RESUMO

The diterpene cyclase CotB2 catalyzes the cyclization of geranylgeranyl diphosphate (GGPP) to the tricyclic cyclooctat-9-en-7-ol, which is characterized by a 5-8-5-fused ring skeleton. We have previously proposed a cyclization cascade involving a unique carbon-carbon bond rearrangement combined with multiple hydride shifts, all occurring at a single active site. Here, we report the first high-resolution X-ray crystal structure of CotB2 with bound substrate analog geranylgeranyl thiodiphosphate (GGSPP). In the GGSPP-bound form, GGSPP folds into a unique S-shaped conformation that probably reflects the substrate-bound state prior to ionization of the substrate GGPP. The folded framework of GGSPP is surrounded by hydrophobic residues and several aromatic and asparagine residues that are well-positioned to stabilize a series of reactive carbocation intermediates through a combination of cation-π and dipole charge interactions. The combined crystal structures and mutagenesis-based biochemical assays provide a structural basis for exquisite control of ring formation and stereochemistry during CotB2 catalysis.


Assuntos
Proteínas de Bactérias/metabolismo , Biocatálise , Diterpenos/química , Oxirredutases Intramoleculares/metabolismo , Fosfatos de Poli-Isoprenil/química , Proteínas de Bactérias/química , Cristalografia por Raios X , Ciclização , Ciclo-Octanos/química , Ciclo-Octanos/metabolismo , Enzimas/química , Enzimas/metabolismo , Mutagênese Sítio-Dirigida , Streptomyces/enzimologia
19.
FEBS Lett ; 591(11): 1611-1622, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28486765

RESUMO

The NADP+ -dependent glutamate dehydrogenase from Corynebacterium glutamicum (CgGDH) is considered to be one of the key enzymes in the industrial fermentation of glutamate due to its high glutamate-producing activity. We determined the crystal structure of CgGDH complexed with NADP+ and 2-iminoglutarate. Among six subunits of hexameric CgGDH-binding NADP+ , only four subunits bind 2-iminoglutarate in a closed form, while the other two are in an open form. In the closed form, 2-iminoglutarate is bound to the substrate-binding site with the 2-imino group stacked by the nicotinamide ring of the coenzyme, suggesting a prehydride transfer state in a hypothesized reaction scheme with the imino intermediate. We also conducted MD simulations and provide insights into the extreme preference for the glutamate-producing reaction of CgGDH. DATABASE: The atomic coordinate and structure factors have been deposited in the RCSB PDB database under the accession number 5GUD.


Assuntos
Corynebacterium glutamicum/enzimologia , Glutamato Desidrogenase/química , Glutamato Desidrogenase/metabolismo , Glutaratos/metabolismo , Iminoácidos/metabolismo , Simulação de Dinâmica Molecular , NADP/metabolismo
20.
ACS Chem Biol ; 12(1): 124-131, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28103675

RESUMO

We recently revealed that a Streptomyces strain possesses the gene encoding amino group carrier protein (AmCP). AmCP is involved in the biosynthesis of a previously unidentified nonproteinogenic amino acid, (2S,6R)-diamino-(5R,7)-dihydroxy-heptanoic acid (DADH), which is a core compound for the synthesis of the dipeptide-containing novel natural product vazabitide A. We used polymerase chain reaction (PCR) screening to investigate the diversity of the biosynthetic machinery that uses AmCP; the results revealed that genes encoding AmCP are widely distributed among actinomycetes. The heterologous expression of the AmCP-containing gene cluster from Streptomyces sp. SoC090715LN-17 led to the discovery of s56-p1, a novel natural product. The structure of s56-p1 was determined by spectroscopic analysis; the results revealed that s56-p1 has a putative DADH-derived molecule as the core and also possesses a unique hydrazone unit that is rarely observed in natural products. Our results pave the way for investigations of unexploited AmCP-mediated biosynthesis routes among actinomycetes and of the biosynthetic mechanism of the unique hydrazone unit.


Assuntos
Proteínas de Bactérias/genética , Produtos Biológicos/metabolismo , Genoma Bacteriano , Hidrazonas/metabolismo , Streptomyces/genética , Actinobacteria/química , Actinobacteria/genética , Actinobacteria/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Produtos Biológicos/química , Vias Biossintéticas , Hidrazonas/química , Família Multigênica , Streptomyces/química , Streptomyces/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...