Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metrologia ; 59(4)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36733421

RESUMO

We have developed generalized methods for electrical substitution optical measurements, as well as cryogenic detectors which can be used to implement them. The new methods detailed here enable measurement of arbitrary periodic waveforms by an electrical substitution radiometer (ESR), which means that spectral and dynamic optical power can be absolutely calibrated directly by a primary standard detector. Cryogenic ESRs are not often used directly by researchers for optical calibrations due to their slow response times and cumbersome operation. We describe two types of ESRs with fast response times, including newly developed cryogenic bolometers with carbon nanotube absorbers, which are manufacturable by standard microfabrication techniques. These detectors have response times near 10 ms, spectral coverage from the ultraviolet to far-infrared, and are ideal for use with generalized electrical substitution. In our first tests of the generalized electrical substitution method with FTS, we have achieved uncertainty in detector response of 0.13 % (k=1) and total measurement uncertainty of 1.1 % (k=1) in the mid-infrared for spectral detector responsivity calibrations. The generalized method and fast detectors greatly expand the range of optical power calibrations which can be made using a wideband primary standard detector, which can shorten calibration chains and improve uncertainties.

2.
Rev Sci Instrum ; 92(2): 025107, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648050

RESUMO

The design and performance of a room temperature electrical substitution radiometer for use as an absolute standard for measuring continuous-wave laser power over a wide range of wavelengths, beam diameters, and powers are described. The standard achieves an accuracy of 0.46% (k = 2) for powers from 10 mW to 100 mW and 0.83% (k = 2) for powers from 1 mW to 10 mW and can accommodate laser beam diameters (1/e2) up to 11 mm and wavelengths from 300 nm to 2 µm. At low power levels, the uncertainty is dominated by sensitivity to fluctuations in the thermal environment. The core of the instrument is a planar, silicon microfabricated bolometer with vertically aligned carbon nanotube absorbers, commercial surface mount thermistors, and an integrated heater. Where possible, commercial electronics and components were used. The performance was validated by comparing it to a National Institute of Standards and Technology primary standard through a transfer standard silicon trap detector and by comparing it to the legacy "C-series" standards in operation at the U.S. Air Force Metrology and Calibration Division (AFMETCAL).

3.
Opt Lett ; 38(2): 175-7, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23454953

RESUMO

A carbon nanotube cryogenic radiometer (CNCR) has been fabricated for electrical-substitution optical power measurements. The CNCR employs vertically aligned multiwall carbon nanotube arrays (VANTAs) as the absorber, heater, and thermistor, with a micromachined silicon substrate as the weak thermal link. Compared to conventional cryogenic radiometers, the CNCR is simpler, more easily reproduced and disseminated, orders of magnitude faster, and can operate over a wide range of wavelengths without the need for a receiver cavity. We describe initial characterization results of the radiometer at 3.9 K, comparing electrical measurements and fiber-coupled optical measurements from 50 µW to 1.5 mW at the wavelength of 1550 nm. We find the response to input electrical and optical power is equivalent to within our measurement uncertainty, which is currently limited by the experimental setup (large temperature fluctuations of the cold stage) rather than the device itself. With improvements in the temperature stability, the performance of the CNCR should be limited only by our ability to measure the reflectance of the optical absorber VANTA.

4.
Opt Lett ; 37(12): 2346-8, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22739903

RESUMO

A picowatt cryogenic radiometer (PCR) has been fabricated at the microscale level for electrical substitution optical fiber power measurements. The absorber, electrical heater, and thermometer are all on a micromachined membrane less than 1 mm on a side. Initial measurements with input powers from 50 fW to 20 nW show a response inequivalence between electrical and optical power of 8%. A comparison of the response to electrical and optical input powers between 15 pW to 70 pW yields a repeatability better than ±0.3% (k=2). From our first optical tests, the system has a noise equivalent power of ≈5×10(-15) W/√Hz at 2 Hz, but simple changes to the measurement scheme should yield an NEP 2 orders of magnitude lower.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...