Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurophysiol ; 112(8): 1801-14, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24944218

RESUMO

Uniform random sparse network architectures are ubiquitous in computational neuroscience, but the implicit hypothesis that they are a good representation of real neuronal networks has been met with skepticism. Here we used two experimental data sets, a study of triplet connectivity statistics and a data set measuring neuronal responses to channelrhodopsin stimuli, to evaluate the fidelity of thousands of model networks. Network architectures comprised three neuron types (excitatory, fast spiking, and nonfast spiking inhibitory) and were created from a set of rules that govern the statistics of the resulting connection types. In a high-dimensional parameter scan, we varied the degree distributions (i.e., how many cells each neuron connects with) and the synaptic weight correlations of synapses from or onto the same neuron. These variations converted initially uniform random and homogeneously connected networks, in which every neuron sent and received equal numbers of synapses with equal synaptic strength distributions, to highly heterogeneous networks in which the number of synapses per neuron, as well as average synaptic strength of synapses from or to a neuron were variable. By evaluating the impact of each variable on the network structure and dynamics, and their similarity to the experimental data, we could falsify the uniform random sparse connectivity hypothesis for 7 of 36 connectivity parameters, but we also confirmed the hypothesis in 8 cases. Twenty-one parameters had no substantial impact on the results of the test protocols we used.


Assuntos
Córtex Cerebral/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Redes Neurais de Computação , Potenciais de Ação , Animais , Simulação por Computador , Interpretação Estatística de Dados , Humanos , Neurônios/fisiologia , Optogenética , Sinapses/fisiologia
2.
J Neurophysiol ; 107(11): 3116-34, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22402650

RESUMO

Synaptic interactions between nearby excitatory and inhibitory neurons in the neocortex are thought to play fundamental roles in sensory processing. Here, we have combined optogenetic stimulation, whole cell recordings, and computational modeling to define key functional microcircuits within layer 2/3 of mouse primary somatosensory barrel cortex. In vitro optogenetic stimulation of excitatory layer 2/3 neurons expressing channelrhodopsin-2 evoked a rapid sequence of excitation followed by inhibition. Fast-spiking (FS) GABAergic neurons received large-amplitude, fast-rising depolarizing postsynaptic potentials, often driving action potentials. In contrast, the same optogenetic stimulus evoked small-amplitude, subthreshold postsynaptic potentials in excitatory and non-fast-spiking (NFS) GABAergic neurons. To understand the synaptic mechanisms underlying this network activity, we investigated unitary synaptic connectivity through multiple simultaneous whole cell recordings. FS GABAergic neurons received unitary excitatory postsynaptic potentials with higher probability, larger amplitudes, and faster kinetics compared with NFS GABAergic neurons and other excitatory neurons. Both FS and NFS GABAergic neurons evoked robust inhibition on postsynaptic layer 2/3 neurons. A simple computational model based on the experimentally determined electrophysiological properties of the different classes of layer 2/3 neurons and their unitary synaptic connectivity accounted for key aspects of the network activity evoked by optogenetic stimulation, including the strong recruitment of FS GABAergic neurons acting to suppress firing of excitatory neurons. We conclude that FS GABAergic neurons play an important role in neocortical microcircuit function through their strong local synaptic connectivity, which might contribute to driving sparse coding in excitatory layer 2/3 neurons of mouse barrel cortex in vivo.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Feminino , Neurônios GABAérgicos/fisiologia , Técnicas de Introdução de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Córtex Somatossensorial/citologia
3.
Neuron ; 61(2): 301-16, 2009 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-19186171

RESUMO

Local microcircuits within neocortical columns form key determinants of sensory processing. Here, we investigate the excitatory synaptic neuronal network of an anatomically defined cortical column, the C2 barrel column of mouse primary somatosensory cortex. This cortical column is known to process tactile information related to the C2 whisker. Through multiple simultaneous whole-cell recordings, we quantify connectivity maps between individual excitatory neurons located across all cortical layers of the C2 barrel column. Synaptic connectivity depended strongly upon somatic laminar location of both presynaptic and postsynaptic neurons, providing definitive evidence for layer-specific signaling pathways. The strongest excitatory influence upon the cortical column was provided by presynaptic layer 4 neurons. In all layers we found rare large-amplitude synaptic connections, which are likely to contribute strongly to reliable information processing. Our data set provides the first functional description of the excitatory synaptic wiring diagram of a physiologically relevant and anatomically well-defined cortical column at single-cell resolution.


Assuntos
Rede Nervosa/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/fisiologia , Vias Aferentes/citologia , Vias Aferentes/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Corantes Fluorescentes , Mecanorreceptores/citologia , Mecanorreceptores/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/citologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios/citologia , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Córtex Somatossensorial/citologia , Coloração e Rotulagem , Sinapses/fisiologia , Sinapses/ultraestrutura , Tato/fisiologia , Nervo Trigêmeo/citologia , Nervo Trigêmeo/fisiologia , Vibrissas/citologia , Vibrissas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...