Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Diabetes Complications ; 38(8): 108798, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38991492

RESUMO

AIMS: Type 1 diabetes has been associated with mitochondrial dysfunction. However, the mechanism of this dysfunction in adults remains unclear. METHODS: A secondary analysis was conducted using data from several clinical trials measuring in-vivo and ex-vivo mitochondrial function in adults with type 1 diabetes (n = 34, age 38.8 ± 14.6 years) and similarly aged controls (n = 59, age 44.6 ± 13.9 years). In-vivo mitochondrial function was assessed before, during, and after isometric exercise with 31phosphorous magnetic resonance spectroscopy. High resolution respirometry of vastus lateralis muscle tissue was used to assess ex-vivo measures. RESULTS: In-vivo data showed higher rates of anaerobic glycolysis (p = 0.013), and a lower maximal mitochondrial oxidative capacity (p = 0.012) and mitochondrial efficiency (p = 0.024) in adults with type 1 diabetes. After adjustment for age and percent body fat maximal mitochondrial capacity (p = 0.014) continued to be lower and anaerobic glycolysis higher (p = 0.040) in adults with type 1 diabetes. Ex-vivo data did not demonstrate significant differences between the two groups. CONCLUSIONS: The in-vivo analysis demonstrates that adults with type 1 diabetes have mitochondrial dysfunction. This builds on previous research showing in-vivo mitochondrial dysfunction in youths with type 1 diabetes and suggests that defects in substrate or oxygen delivery may play a role in in-vivo dysfunction.

3.
Can J Diabetes ; 48(4): 244-249.e1, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38341135

RESUMO

OBJECTIVES: Glycoprotein acetyls (GlycA's) are biomarkers of systemic inflammation and cardiovascular disease, yet little is known about their role in type 1 diabetes (T1D). In this study we examined the associations among GlycA's, central adiposity, insulin resistance, and early kidney injury in youth with T1D. METHODS: Glomerular filtration rate and renal plasma flow by iohexol and p-aminohippurate clearance, urine albumin-to-creatinine ratio (UACR), central adiposity by dual-energy x-ray absorptiometry, and estimated insulin sensitivity were assessed in 50 youth with T1D (16±3.0 years of age, 50% female, glycated hemoglobin 8.7%±1.3%, T1D duration 5.7±2.6 years). Concentrations of GlycA were quantified by targeted nuclear magnetic resonance spectroscopy. Correlation and multivariable linear regression analyses were performed. RESULTS: GlycA's were higher in girls vs boys (1.05±0.26 vs 0.84±0.15 mmol/L, p=0.001) and in participants living with overweight/obesity vs normal weight (1.12±0.23 vs 0.87±0.20 mmol/L, p=0.0004). GlycA's correlated positively with estimated intraglomerular pressure (r=0.52, p=0.001), UACR (r=0.53, p<0.0001), and trunk mass (r=0.45, p=0.001), and inversely with estimated insulin sensitivity (r=-0.36, p=0.01). All relationships remained significant after adjustment for age, sex, and glycated hemoglobin. CONCLUSIONS: As biomarkers of inflammation, GlycA's were higher in girls and those with overweight or obese body habitus in T1D. GlycA's associated with parameters of early kidney dysfunction, central adiposity, and insulin resistance.


Assuntos
Albuminúria , Diabetes Mellitus Tipo 1 , Resistência à Insulina , Humanos , Feminino , Masculino , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/fisiopatologia , Adolescente , Albuminúria/fisiopatologia , Biomarcadores/sangue , Criança , Adiposidade/fisiologia , Obesidade Abdominal/complicações , Obesidade Abdominal/fisiopatologia , Glicoproteínas/sangue , Taxa de Filtração Glomerular , Adulto Jovem
4.
Metabolism ; 153: 155785, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38215965

RESUMO

The coexistence of cardiovascular disease (CVD) and diabetic kidney disease (DKD) is common in people with type 1 diabetes (T1D) and is strongly associated with an increased risk of morbidity and mortality. Hence, it is imperative to explore robust tools that can accurately reflect the development and progression of cardiorenal complications. Several cardiovascular and kidney biomarkers have been identified to detect at-risk individuals with T1D. The primary aim of this review is to highlight biomarkers of injury, inflammation, or renal hemodynamic changes that may influence T1D susceptibility to CVD and DKD. We will also examine the impact of approved pharmacotherapies for type 2 diabetes, including renin-angiotensin-aldosterone system (RAAS) inhibitors, sodium-glucose cotransporter-2 (SGLT2) inhibitors and glucagon-like peptide-1 receptor agonists (GLP-1RAs) on candidate biomarkers for cardiorenal complications in people with T1D and discuss how these changes may potentially mediate kidney and cardiovascular protection. Identifying predictive and prognostic biomarkers for DKD and CVD may highlight potential drug targets to attenuate cardiorenal disease progression, implement novel risk stratification measures in clinical trials, and improve the assessment, diagnosis, and treatment of at-risk individuals with T1D.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hemodinâmica , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Biomarcadores
5.
Expert Opin Pharmacother ; 24(8): 913-924, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37071054

RESUMO

INTRODUCTION: Diabetic kidney disease (DKD) is a leading cause of mortality in people with type 2 diabetes (T2D), and over 50% of individuals with youth-onset T2D will develop DKD as a young adult. Diagnosis of early-onset DKD remains a challenge in young persons with T2D secondary to a lack of available biomarkers for early DKD, while the injuries may still be reversible. Furthermore, multiple barriers exist to initiate timely prevention and treatment strategies for DKD, including a lack of Food and Drug Administration approval of medications in pediatrics; provider comfort with medication prescription, titration, and monitoring; and medication adherence. AREAS COVERED: Therapies that have promise for slowing DKD progression in youth with T2D include metformin, renin-angiotensin-aldosterone system inhibitors, glucagon-like peptide-1 receptor agonists, sodium glucose co-transporter 2 inhibitors, thiazolidinediones, sulfonylureas, endothelin receptor agonists, and mineralocorticoid antagonists. Novel agents are also in development to act synergistically on the kidneys with the aforementioned medications. We comprehensively review the available pharmacologic strategies for DKD in youth-onset T2D including mechanisms of action, potential adverse effects, and kidney-specific effects, with an emphasis on published pediatric and adult trials. EXPERT OPINION: Large clinical trials evaluating pharmacologic interventions targeting the treatment of DKD in youth-onset T2D are strongly needed.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Metformina , Inibidores do Transportador 2 de Sódio-Glicose , Adolescente , Humanos , Criança , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Rim , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Metformina/uso terapêutico
7.
J Diabetes Complications ; 37(2): 108384, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36623423

RESUMO

AIMS: Elevated triglycerides (TG) are associated with development and progression of kidney disease, and TG distributions across lipoprotein subclasses predict kidney dysfunction in adults with type 1 diabetes (T1D). Little is known regarding these relationships in youth. METHODS: In this single center study conducted from October 2018-2019, lipid constituents from lipoprotein subclasses were quantified by targeted nuclear magnetic resonance spectroscopy. Glomerular filtration rate (GFR), renal plasma flow (RPF), afferent arteriolar resistance (RA), efferent arteriolar resistance (RE), intraglomerular pressure (PGLO), urine albumin-to-creatinine ratio (UACR), and chitinase-3-like protein 1 (YKL-40), a marker of kidney tubule injury, were assessed. Cross-sectional relationships were assessed by correlation and multivariable linear regression (adjusted for age, sex, HbA1c) models. RESULTS: Fifty youth with T1D (age 16 ± 3 years, 50 % female, HbA1c 8.7 ± 1.3 %, T1D duration 5.7 ± 2.6 years) were included. Very-low-density lipoprotein (VLDL)-TG concentrations correlated and associated with intraglomerular hemodynamic function markers including GFR, PGLO, UACR, as did small low-density lipoprotein (LDL)-TG and small high-density lipoprotein (HDL)-TG. YKL-40 correlated with all lipoprotein subclasses. CONCLUSION: TG within lipoprotein subclasses, particularly VLDL, associated with PGLO, GFR, albuminuria, and YKL-40. Lipid perturbations may serve as novel targets to mitigate early kidney disease.


Assuntos
Diabetes Mellitus Tipo 1 , Adolescente , Feminino , Humanos , Masculino , Adulto Jovem , Proteína 1 Semelhante à Quitinase-3 , Hemoglobinas Glicadas , Hemodinâmica , Rim , Lipoproteínas , Triglicerídeos
9.
Clin Sci (Lond) ; 136(21): 1471-1483, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36326718

RESUMO

Type 2 diabetes (T2D) is a global health pandemic with significant humanitarian, economic, and societal implications, particularly for youth and young adults who are experiencing an exponential rise in incident disease. Youth-onset T2D has a more aggressive phenotype than adult-onset T2D, and this translates to important differences in rates of progression of diabetic kidney disease (DKD). We hypothesize that youth-onset DKD due to T2D may exhibit morphometric, metabolic, and molecular characteristics that are distinct from adult-onset T2D and develop secondary to inherent differences in renal energy expenditure and substrate metabolism, resulting in a central metabolic imbalance. Kidney structural changes that are evident at the onset of puberty also serve to exacerbate the organ's baseline high rates of energy expenditure. Additionally, the physiologic state of insulin resistance seen during puberty increases the risk for kidney disease and is exacerbated by both concurrent diabetes and obesity. A metabolic mismatch in renal energetics may represent a novel target for pharmacologic intervention, both for prevention and treatment of DKD. Further investigation into the underlying molecular mechanisms resulting in DKD in youth-onset T2D using metabolomics and RNA sequencing of kidney tissue obtained at biopsy is necessary to expand our understanding of early DKD and potential targets for therapeutic intervention. Furthermore, large-scale clinical trials evaluating the duration of kidney protective effects of pharmacologic interventions that target a metabolic mismatch in kidney energy expenditure are needed to help mitigate the risk of DKD in youth-onset T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Resistência à Insulina , Humanos , Nefropatias Diabéticas/epidemiologia , Diabetes Mellitus Tipo 2/complicações , Rim , Fenótipo
10.
Curr Cardiol Rep ; 24(12): 2043-2056, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36279036

RESUMO

PURPOSE OF REVIEW: The incidence of type 1 diabetes (T1D) is rising in all age groups. T1D is associated with chronic microvascular and macrovascular complications but improving glycemic trends can delay the onset and slow the progression of these complications. Utilization of technological devices for diabetes management, such as continuous glucose monitors (CGM) and insulin pumps, is increasing, and these devices are associated with improvements in glycemic trends. Thus, device use may be associated with long-term prevention of T1D complications, yet few studies have investigated the direct impacts of devices on chronic complications in T1D. This review will describe common diabetes devices and combination systems, as well as review relationships between device use and cardiovascular outcomes in T1D. RECENT FINDINGS: Findings from existing cohort and national registry studies suggest that pump use may aid in improving cardiovascular risk factors such as hypertension and dyslipidemia. Furthermore, pump users have been shown to have lower arterial stiffness and better measures of myocardial function. In registry and case-control longitudinal data, pump use has been associated with fewer cardiovascular events and reduction of cardiovascular disease (CVD) and all-cause mortality. CVD is the leading cause of morbidity and mortality in T1D. Consistent use of diabetes devices may protect against the development and progression of macrovascular complications such as CVD through improvement in glycemic trends. Existing literature is limited, but findings suggest that pump use may reduce acute cardiovascular risk factors as well as chronic cardiovascular complications and overall mortality in T1D.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Insulina/uso terapêutico , Sistemas de Infusão de Insulina , Glicemia , Automonitorização da Glicemia , Doenças Cardiovasculares/prevenção & controle , Hipoglicemiantes/uso terapêutico
12.
Kidney Int Rep ; 7(7): 1665-1672, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35812301

RESUMO

Introduction: Coffee is one of the most frequently consumed beverages worldwide and has been found to have a wide assortment of health benefits. Although habitual coffee consumption is associated with a lower incidence of chronic kidney disease, an association between coffee and acute kidney injury (AKI) has not yet been revealed. Methods: In the Atherosclerosis Risk in Communities (ARIC) Study, a prospective cohort study of 14,207 adults aged 45 to 64 years, coffee consumption (cups/d) was assessed at a single visit via food frequency questionnaires and compared with incident AKI defined by hospitalization with an AKI-related International Classification of Diseases code. Results: In ARIC, there were 1694 cases of incident AKI in a median of 24 follow-up years. Higher coffee consumption was associated with lower AKI risk versus no consumption (hazard ratio [HR] <1 cup/d: 0.92 [95% CI: 0.79-1.08]; 1 cup/d: 1.08 [95% CI: 0.94-1.24]; 2 to 3 cups/d: 0.83 [95% CI: 0.72-0.95]; >3 cups/d: 0.83 [95% CI: 0.71-0.96]; reference: never, P = 0.003). Trends for AKI risk across coffee categories remained significant after multivariable adjustment for age, sex, race-center, education, total daily energy intake, physical activity, smoking, alcohol intake, diet quality (Dietary Approaches to Stop Hypertension [DASH] score), systolic blood pressure (BP), diabetes status, use of antihypertensive agents, estimated glomerular filtration rate (eGFR), and body mass index (BMI) (P = 0.02). Conclusion: Higher coffee intake was associated with a lower risk of incident AKI and could present an opportunity for cardiorenal protection through diet. Further evaluation of the physiological mechanisms underlying the cardiorenal protective effects of coffee consumption is necessary.

13.
J Diabetes Complications ; 36(6): 108203, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523653

RESUMO

OBJECTIVE: We examined changes in the excretion of various amino acids and in glycolysis and ketogenesis-related metabolites, during and after diabetic ketoacidosis (DKA) diagnosis, in youth with known or new onset type 1 diabetes (T1D). METHODS: Urine samples were collected from 40 youth with DKA (52% boys, mean age 11 ± 4 years, venous pH 7.2 ± 0.1, blood glucose 451 ± 163 mg/dL) at 3 time points: 0-8 h and 12-24 h after starting an insulin infusion, and 3 months after hospital discharge. Mixed-effects models evaluated the changes in amino acids and other metabolites in the urine. RESULTS: Concentrations of urine histidine, threonine, tryptophan, and leucine per creatinine were highest at 0-8 h (148.8 ± 23.5, 59.5 ± 12.3, 15.4 ± 1.4, and 24.5 ± 2.4% of urine creatinine, respectively), and significantly decreased over 3 months (p = 0.028, p = 0.027, p = 0.019, and p < 0.0001, respectively). Urine histidine, threonine, tryptophan, and leucine per urine creatinine decreased by 10.6 ± 19.2, 0.7 ± 0.9, 1.3 ± 0.9, and 0.5 ± 0.3-fold, respectively, between 0 and 8 h and 3 months. CONCLUSIONS: In our study, DKA was associated with profound aminoaciduria, suggestive of proximal tubular dysfunction analogous to Fanconi syndrome.


Assuntos
Diabetes Mellitus Tipo 1 , Cetoacidose Diabética , Nefropatias Diabéticas , Adolescente , Aminoácidos , Criança , Creatinina , Diabetes Mellitus Tipo 1/diagnóstico , Cetoacidose Diabética/complicações , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/etiologia , Feminino , Histidina , Humanos , Leucina , Masculino , Treonina , Triptofano
16.
Pediatr Nephrol ; 37(12): 3085-3092, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35286453

RESUMO

BACKGROUND: Early identification of youth with type 1 diabetes (T1D) at risk for diabetic kidney disease may improve clinical outcomes. We examined the cross-sectional relationship between kidney biomarkers neutrophil gelatinase-associated lipocalin (NGAL), copeptin, interleukin-18 (IL-18), kidney injury molecule-1 (KIM-1), chitinase-3-like protein-1 (YKL-40), and monocyte chemoattractant protein-1 (MCP-1) and intrarenal hemodynamic function in adolescents with T1D. METHODS: Urine albumin-to-creatinine ratio (UACR), renal vascular resistance (RVR), glomerular filtration rate (GFR), intraglomerular pressure (PGLO), efferent arteriole resistance (RE), afferent arteriolar resistance (RA), and renal plasma flow (RPF), and the above indicated biomarkers were assessed in youth aged 12-21 years with and without T1D of < 10 years duration. RESULTS: Fifty adolescents with T1D (16.1 ± 3.0 years, HbA1c 8.6 ± 1.2%) and 20 adolescents of comparable BMI without T1D (16.1 ± 2.9 years, HbA1c 5.2 ± 0.2%) were enrolled. Adolescents with T1D demonstrated significantly higher GFR, RPF, RE, and PGLO than controls (39%, 33%, 74%, and 29%, respectively, all p < 0.0001). Adolescents with T1D also exhibited significantly lower RVR and RA than controls (25% and 155%, respectively, both p < 0.0001). YKL-40 and KIM-1 concentrations, respectively, were positively associated with GFR (r: 0.43, p = 0.002; r: 0.41, p = 0.003), RPF (r: 0.29, p = 0.08; r: 0.34, p = 0.04), UACR (r: 0.33, p = 0.02; r: 0.50, p = 0.0002), and PGLO (r: 0.45, p = 0.006; r: 0.52, p = 0.001) in adolescents with T1D. CONCLUSIONS: Higher concentrations of biomarkers YKL-40 and KIM-1 may help define the risk for intraglomerular hemodynamic dysfunction in youth with T1D. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Diabetes Mellitus Tipo 1 , Adolescente , Humanos , Lipocalina-2 , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/diagnóstico , Interleucina-18 , Proteína 1 Semelhante à Quitinase-3 , Quimiocina CCL2 , Creatinina , Hemoglobinas Glicadas , Biomarcadores , Hemodinâmica , Albuminas
17.
Pediatr Nephrol ; 37(1): 79-93, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33852054

RESUMO

The prevalence of youth-onset diabetes is progressing rapidly worldwide, and poor glycemic control, in combination with prolonged diabetes duration and comorbidities including hypertension, has led to the early development of microvascular complications including diabetic kidney disease, retinopathy, and neuropathy. Pediatric populations with type 1 (T1D) and type 2 (T2D) diabetes are classically underdiagnosed with microvascular complications, and this leads to both undertreatment and insufficient attention to the mitigation of risk factors that could help attenuate further progression of complications and decrease the likelihood for long-term morbidity and mortality. This narrative review aims to present a comprehensive summary of the epidemiology, risk factors, symptoms, screening practices, and treatment options, including future opportunities for treatment advancement, for microvascular complications in youth with T1D and T2D. We seek to uniquely focus on the inherent challenges of managing pediatric populations with diabetes and discuss the similarities and differences between microvascular complications in T1D and T2D, while presenting a strong emphasis on the importance of early identification of at-risk youth. Further investigation of possible treatment mechanisms for microvascular complications in youth with T1D and T2D through dedicated pediatric outcome trials is necessary to target the brief window where early pathological vascular changes may be significantly attenuated.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Adolescente , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/epidemiologia , Neuropatias Diabéticas/epidemiologia , Retinopatia Diabética/epidemiologia , Humanos , Fatores de Risco
18.
Adv Chronic Kidney Dis ; 28(4): 337-346, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34922690

RESUMO

The worldwide prevalence of type 2 diabetes (T2D) is steadily increasing, and it remains a challenging public health problem for populations in both developing and developed countries around the world. Despite the recent advances in novel antidiabetic agents, diabetic kidney disease and cardiovascular disease remain the leading causes of morbidity and mortality in T2D. Glucagon-like peptide-1 (GLP-1) receptor agonists (RAs), incretin hormones that stimulate postprandial insulin secretion, serve as a promising avenue for treatment of T2D as they result in a variety of antihyperglycemic effects including increased endogenous insulin secretion, decreased gluconeogenesis, inhibition of pancreatic α-cell glucagon production, decreased pancreatic ß-cell apoptosis, and increased ß-cell proliferation. GLP-1RAs have also been found to delay gastric emptying, promote weight loss, increase satiety, decrease hypertension, improve dyslipidemia, reduce inflammation, improve albuminuria, induce natriuresis, improve cardiovascular function, and prevent thrombogenesis. In this review, we will present risk factors for the development of cardiac and kidney disease in individuals with T2D and discuss possible mechanisms for the cardiorenal protective effects seen with GLP-1RAs. We will also present the possibility of dual- and tri-receptor agonist therapies with GLP-1, gastric inhibitory peptide, and glucagon RAs as an area of possible mechanistic synergy in the treatment of T2D and the prevention of cardiorenal complications.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Receptor do Peptídeo Semelhante ao Glucagon 1 , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico
19.
Kidney Int Rep ; 6(9): 2323-2330, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34514193

RESUMO

INTRODUCTION: Metabolic acidosis is associated with cardiovascular events, graft function, and mortality in kidney transplant recipients (KTRs). We examined the effect of alkali therapy on vascular endothelial function in KTRs. METHODS: We performed an 18-week, randomized, double-blind, placebo-controlled crossover pilot study examining the effect of sodium bicarbonate therapy versus placebo on vascular function in 20 adult KTRs at least 1 year from transplant with an estimated glomerular filtration rate (eGFR) ≥45 ml/min per 1.73 m2 and a serum bicarbonate level of 20 to 26 mEq/L. Each treatment period was 8 weeks in duration with a 2-week washout period between treatments. The primary outcome was change in brachial artery flow-mediated dilation (FMD) between sodium bicarbonate treatment and placebo. RESULTS: Twenty patients completed the study and were included in the primary analysis. The mean (SD) baseline eGFR of participants was 75 (22) ml/min per 1.73 m2, respectively. Serum bicarbonate levels did not increase significantly with treatment (0.3 [1.5] mEq/L, P = 0.37). Sodium bicarbonate therapy was not associated with worsening blood pressure, weight gain, or hypokalemia. There was no significant increase in FMD after 8 weeks of sodium bicarbonate therapy compared to placebo (mean change in FMD 2.2%, 95% CI -0.1 to 4.6, P = 0.06). There were no significant changes in high-sensitivity C-reactive protein, interleukin-6, eGFR, or urinary albumin-to-creatinine ratio during treatment. Urinary ammonium excretion decreased by 9 mmol/d (P=0.003), with sodium bicarbonate. CONCLUSIONS: Sodium bicarbonate therapy is safe and feasible in KTRs, and our results strengthen the need for a larger randomized controlled trial.

20.
Front Pediatr ; 9: 668033, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211943

RESUMO

Diabetic kidney disease (DKD) is a common complication of type 1 and 2 diabetes and often presents during adolescence and young adulthood. Given the growing incidence of both type 1 and type 2 diabetes in children and adolescents, DKD represents a significant public health problem. Acute kidney injury (AKI) in youth with diabetes is strongly associated with risk of DKD development. This review will summarize the epidemiology and pathophysiology of AKI in children with diabetes, the relationship between AKI and DKD, and the potential therapeutic interventions. Finally, we will appraise the impact of the recent COVID-19 infection pandemic on AKI in children with diabetes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...