Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
JCI Insight ; 9(10)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775154

RESUMO

MAPK activating death domain (MADD) is a multifunctional protein regulating small GTPases RAB3 and RAB27, MAPK signaling, and cell survival. Polymorphisms in the MADD locus are associated with glycemic traits, but patients with biallelic variants in MADD manifest a complex syndrome affecting nervous, endocrine, exocrine, and hematological systems. We identified a homozygous splice site variant in MADD in 2 siblings with developmental delay, diabetes, congenital hypogonadotropic hypogonadism, and growth hormone deficiency. This variant led to skipping of exon 30 and in-frame deletion of 36 amino acids. To elucidate how this mutation causes pleiotropic endocrine phenotypes, we generated relevant cellular models with deletion of MADD exon 30 (dex30). We observed reduced numbers of ß cells, decreased insulin content, and increased proinsulin-to-insulin ratio in dex30 human embryonic stem cell-derived pancreatic islets. Concordantly, dex30 led to decreased insulin expression in human ß cell line EndoC-ßH1. Furthermore, dex30 resulted in decreased luteinizing hormone expression in mouse pituitary gonadotrope cell line LßT2 but did not affect ontogeny of stem cell-derived GnRH neurons. Protein-protein interactions of wild-type and dex30 MADD revealed changes affecting multiple signaling pathways, while the GDP/GTP exchange activity of dex30 MADD remained intact. Our results suggest MADD-specific processes regulate hormone expression in pancreatic ß cells and pituitary gonadotropes.


Assuntos
Células Secretoras de Insulina , Células Secretoras de Insulina/metabolismo , Humanos , Animais , Camundongos , Masculino , Gonadotrofos/metabolismo , Feminino , Sítios de Splice de RNA/genética , Linhagem Celular , Insulina/metabolismo , Irmãos , Éxons/genética , Proteínas rab3 de Ligação ao GTP/metabolismo , Proteínas rab3 de Ligação ao GTP/genética , Hipogonadismo/genética , Hipogonadismo/metabolismo , Hipogonadismo/patologia
2.
Front Cardiovasc Med ; 10: 1254272, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795486

RESUMO

Background: Familial dilated cardiomyopathy (DCM) causes heart failure and may lead to heart transplantation. DCM is typically a monogenic disorder with autosomal dominant inheritance. Currently disease-causing variants have been reported in over 60 genes that encode proteins in sarcomeres, nuclear lamina, desmosomes, cytoskeleton, and mitochondria. Over half of the patients undergoing comprehensive genetic testing are left without a molecular diagnosis even when patient selection follows strict DCM criteria. Methods and results: This study was a retrospective review of patients referred for genetic testing at Blueprint Genetics due to suspected inherited DCM. Next generation sequencing panels included 23-316 genes associated with cardiomyopathies and other monogenic cardiac diseases. Variants were considered diagnostic if classified as pathogenic (P) or likely pathogenic (LP). Of the 2,088 patients 514 (24.6%) obtained a molecular diagnosis; 534 LP/P variants were observed across 45 genes, 2.7% (14/514) had two diagnostic variants in dominant genes. Nine copy number variants were identified: two multigene and seven intragenic. Diagnostic variants were observed most often in TTN (45.3%), DSP (6.7%), LMNA (6.7%), and MYH7 (5.2%). Clinical characteristics independently associated with molecular diagnosis were: a lower age at diagnosis, family history of DCM, paroxysmal atrial fibrillation, absence of left bundle branch block, and the presence of an implantable cardioverter-defibrillator. Conclusions: Panel testing provides good diagnostic yield in patients with clinically suspected DCM. Causative variants were identified in 45 genes. In minority, two diagnostic variants were observed in dominant genes. Our results support the use of genetic panels in clinical settings in DCM patients with suspected genetic etiology.

3.
Front Genet ; 12: 786705, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899865

RESUMO

Background: Familial dilated cardiomyopathy (DCM) is a monogenic disorder typically inherited in an autosomal dominant pattern. We have identified two Finnish families with familial cardiomyopathy that is not explained by a variant in any previously known cardiomyopathy gene. We describe the cardiac phenotype related to homozygous truncating GCOM1 variants. Methods and Results: This study included two probands and their relatives. All the participants are of Finnish ethnicity. Whole-exome sequencing was used to test the probands; bi-directional Sanger sequencing was used to identify the GCOM1 variants in probands' family members. Clinical evaluation was performed, medical records and death certificates were obtained. Immunohistochemical analysis of myocardial samples was conducted. A homozygous GCOM1 variant was identified altogether in six individuals, all considered to be affected. None of the nine heterozygous family members fulfilled any cardiomyopathy criteria. Heart failure was the leading clinical feature, and the patients may have had a tendency for atrial arrhythmias. Conclusions: This study demonstrates the significance of GCOM1 variants as a cause of human cardiomyopathy and highlights the importance of searching for new candidate genes when targeted gene panels do not yield a positive outcome.

4.
BMC Cardiovasc Disord ; 21(1): 126, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33673806

RESUMO

BACKGROUND: Genetic testing in hypertrophic cardiomyopathy (HCM) is a published guideline-based recommendation. The diagnostic yield of genetic testing and corresponding HCM-associated genes have been largely documented by single center studies and carefully selected patient cohorts. Our goal was to evaluate the diagnostic yield of genetic testing in a heterogeneous cohort of patients with a clinical suspicion of HCM, referred for genetic testing from multiple centers around the world. METHODS: A retrospective review of patients with a suspected clinical diagnosis of HCM referred for genetic testing at Blueprint Genetics was undertaken. The analysis included syndromic, myopathic and metabolic etiologies. Genetic test results and variant classifications were extracted from the database. Variants classified as pathogenic (P) or likely pathogenic (LP) were considered diagnostic. RESULTS: A total of 1376 samples were analyzed. Three hundred and sixty-nine tests were diagnostic (26.8%); 373 P or LP variants were identified. Only one copy number variant was identified. The majority of diagnostic variants involved genes encoding the sarcomere (85.0%) followed by 4.3% of diagnostic variants identified in the RASopathy genes. Two percent of diagnostic variants were in genes associated with a cardiomyopathy other than HCM or an inherited arrhythmia. Clinical variables that increased the likelihood of identifying a diagnostic variant included: an earlier age at diagnosis (p < 0.0001), a higher maximum wall thickness (MWT) (p < 0.0001), a positive family history (p < 0.0001), the absence of hypertension (p = 0.0002), and the presence of an implantable cardioverter-defibrillator (ICD) (p = 0.0004). CONCLUSION: The diagnostic yield of genetic testing in this heterogeneous cohort of patients with a clinical suspicion of HCM is lower than what has been reported in well-characterized patient cohorts. We report the highest yield of diagnostic variants in the RASopathy genes identified in a laboratory cohort of HCM patients to date. The spectrum of genes implicated in this unselected cohort highlights the importance of pre-and post-test counseling when offering genetic testing to the broad HCM population.


Assuntos
Cardiomiopatia Hipertrófica/diagnóstico , Testes Genéticos , Variação Genética , Adolescente , Adulto , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/fisiopatologia , Criança , Pré-Escolar , Feminino , Marcadores Genéticos , Predisposição Genética para Doença , Humanos , Lactente , Masculino , Fenótipo , Valor Preditivo dos Testes , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Adulto Jovem
5.
PLoS One ; 16(2): e0245681, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33534821

RESUMO

BACKGROUND: Familial dilated cardiomyopathy (DCM) is typically a monogenic disorder with dominant inheritance. Although over 40 genes have been linked to DCM, more than half of the patients undergoing comprehensive genetic testing are left without molecular diagnosis. Recently, biallelic protein-truncating variants (PTVs) in the nebulin-related anchoring protein gene (NRAP) were identified in a few patients with sporadic DCM. METHODS AND RESULTS: We determined the frequency of rare NRAP variants in a cohort of DCM patients and control patients to further evaluate role of this gene in cardiomyopathies. A retrospective analysis of our internal variant database consisting of 31,639 individuals who underwent genetic testing (either panel or direct exome sequencing) was performed. The DCM group included 577 patients with either a confirmed or suspected DCM diagnosis. A control cohort of 31,062 individuals, including 25,912 individuals with non-cardiac (control group) and 5,150 with non-DCM cardiac indications (Non-DCM cardiac group). Biallelic (n = 6) or two (n = 5) NRAP variants (two PTVs or PTV+missense) were identified in 11 unrelated probands with DCM (1.9%) but none of the controls. None of the 11 probands had an alternative molecular diagnosis. Family member testing supports co-segregation. Biallelic or potentially biallelic NRAP variants were enriched in DCM vs. controls (OR 1052, p<0.0001). Based on the frequency of NRAP PTVs in the gnomAD reference population, and predicting full penetrance, biallelic NRAP variants could explain 0.25%-2.46% of all DCM cases. CONCLUSION: Loss-of-function in NRAP is a cause for autosomal recessive dilated cardiomyopathy, supporting its inclusion in comprehensive genetic testing.


Assuntos
Cardiomiopatia Dilatada , Proteínas Musculares/genética , Adulto , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/genética , Pré-Escolar , Feminino , Testes Genéticos , Humanos , Mutação com Perda de Função , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
6.
Am J Hum Genet ; 106(1): 58-70, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31883645

RESUMO

Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disorder characterized by infertility and the absence of puberty. Defects in GnRH neuron migration or altered GnRH secretion and/or action lead to a severe gonadotropin-releasing hormone (GnRH) deficiency. Given the close developmental association of GnRH neurons with the olfactory primary axons, CHH is often associated with anosmia or hyposmia, in which case it is defined as Kallmann syndrome (KS). The genetics of CHH are heterogeneous, and >40 genes are involved either alone or in combination. Several CHH-related genes controlling GnRH ontogeny encode proteins containing fibronectin-3 (FN3) domains, which are important for brain and neural development. Therefore, we hypothesized that defects in other FN3-superfamily genes would underlie CHH. Next-generation sequencing was performed for 240 CHH unrelated probands and filtered for rare, protein-truncating variants (PTVs) in FN3-superfamily genes. Compared to gnomAD controls the CHH cohort was statistically enriched for PTVs in neuron-derived neurotrophic factor (NDNF) (p = 1.40 × 10-6). Three heterozygous PTVs (p.Lys62∗, p.Tyr128Thrfs∗55, and p.Trp469∗, all absent from the gnomAD database) and an additional heterozygous missense mutation (p.Thr201Ser) were found in four KS probands. Notably, NDNF is expressed along the GnRH neuron migratory route in both mouse embryos and human fetuses and enhances GnRH neuron migration. Further, knock down of the zebrafish ortholog of NDNF resulted in altered GnRH migration. Finally, mice lacking Ndnf showed delayed GnRH neuron migration and altered olfactory axonal projections to the olfactory bulb; both results are consistent with a role of NDNF in GnRH neuron development. Altogether, our results highlight NDNF as a gene involved in the GnRH neuron migration implicated in KS.


Assuntos
Movimento Celular , Hipogonadismo/congênito , Hipogonadismo/genética , Mutação , Fatores de Crescimento Neural/genética , Neurônios/patologia , Adolescente , Animais , Estudos de Coortes , Feminino , Heterozigoto , Humanos , Hipogonadismo/patologia , Masculino , Camundongos , Camundongos Knockout , Fatores de Crescimento Neural/fisiologia , Neurônios/metabolismo , Linhagem , Peixe-Zebra
7.
Nat Commun ; 8(1): 1289, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29097701

RESUMO

Familial growth hormone deficiency provides an opportunity to identify new genetic causes of short stature. Here we combine linkage analysis with whole-genome resequencing in patients with growth hormone deficiency and maternally inherited gingival fibromatosis. We report that patients from three unrelated families harbor either of two missense mutations, c.347G>T p.(Arg116Leu) or c.1106C>T p.(Pro369Leu), in KCNQ1, a gene previously implicated in the long QT interval syndrome. Kcnq1 is expressed in hypothalamic GHRH neurons and pituitary somatotropes. Co-expressing KCNQ1 with the KCNE2 ß-subunit shows that both KCNQ1 mutants increase current levels in patch clamp analyses and are associated with reduced pituitary hormone secretion from AtT-20 cells. In conclusion, our results reveal a role for the KCNQ1 potassium channel in the regulation of human growth, and show that growth hormone deficiency associated with maternally inherited gingival fibromatosis is an allelic disorder with cardiac arrhythmia syndromes caused by KCNQ1 mutations.


Assuntos
Fibromatose Gengival/genética , Hormônio do Crescimento Humano/deficiência , Canal de Potássio KCNQ1/genética , Mutação de Sentido Incorreto , Adolescente , Hormônio Adrenocorticotrópico/metabolismo , Adulto , Alelos , Substituição de Aminoácidos , Animais , Arritmias Cardíacas/genética , Criança , Pré-Escolar , Feminino , Fibromatose Gengival/metabolismo , Humanos , Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/metabolismo , Masculino , Herança Materna/genética , Camundongos , Pessoa de Meia-Idade , Modelos Moleculares , Linhagem , Mapas de Interação de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Adulto Jovem
8.
Sci Rep ; 6: 32819, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27609317

RESUMO

Mutations in the X-linked androgen receptor (AR) gene underlie complete androgen insensitivity syndrome (CAIS), the most common cause of 46,XY sex reversal. Molecular genetic diagnosis of CAIS, however, remains uncertain in patients who show normal coding region of AR. Here, we describe a novel mechanism of AR disruption leading to CAIS in two 46,XY sisters. We analyzed whole-genome sequencing data of the patients for pathogenic variants outside the AR coding region. Patient fibroblasts from the genital area were used for AR cDNA analysis and protein quantification. Analysis of the cDNA revealed aberrant splicing of the mRNA caused by a deep intronic mutation (c.2450-118A>G) in the intron 6 of AR. The mutation creates a de novo 5' splice site and a putative exonic splicing enhancer motif, which leads to the preferential formation of two aberrantly spliced mRNAs (predicted to include a premature stop codon). Patient fibroblasts contained no detectable AR protein. Our results show that patients with CAIS and normal AR coding region need to be examined for deep intronic mutations that can lead to pseudoexon activation.


Assuntos
Síndrome de Resistência a Andrógenos/genética , Mutação Puntual , Receptores Androgênicos/genética , Processamento Alternativo , Síndrome de Resistência a Andrógenos/metabolismo , Éxons , Feminino , Predisposição Genética para Doença , Humanos , Íntrons , Masculino , Receptores Androgênicos/metabolismo , Irmãos , Sequenciamento do Exoma/métodos
9.
Pediatr Res ; 79(5): 705-9, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26720605

RESUMO

BACKGROUND: We describe childhood growth patterns in a series of well-characterized patients with congenital hypogonadotropic hypogonadism (CHH) with special emphasis on genotype-phenotype correlation. METHODS: We retrospectively evaluated the growth charts of 36 males with CHH (27 from Finland and 9 from Denmark). Fifteen patients (42%) had representative growth measurements during the first year of life. Genetically verified diagnosis of CHH was made in 15 (42%) patients (KAL1, FGFR1, GNRHR, or PROK2). RESULTS: We found a deceleration of growth rate during early childhood. The mean (SD) length standard deviation score (SDS) at birth (0.2 (1.6) SDS) decreased significantly during the first 3 (to -0.9 (1.2) SDS) and 6 mo of life (to -0.7 (1.3) SDS). At the average age of 3 y, mean height SDS (-0.2 (1.3) SDS) did not differ from mid-parental target height (MPH). Mean height SDS reached its nadir (-1.7 (1.4) SDS) at an average age of 15.8 (0.8) years reflecting pubertal failure. Final heights did not differ from MPH. No clear genotype-growth associations emerged. CONCLUSION: Moderate postnatal length deflection is a novel feature of CHH and may reflect early androgen deficiency. Childhood growth patterns are not of clinical value in targeting molecular genetic diagnosis of CHH.


Assuntos
Hipogonadismo/fisiopatologia , Adolescente , Desenvolvimento do Adolescente , Androgênios/deficiência , Criança , Desenvolvimento Infantil , Pré-Escolar , Dinamarca , Proteínas da Matriz Extracelular/genética , Finlândia , Hormônios Gastrointestinais/genética , Estudos de Associação Genética , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas do Tecido Nervoso/genética , Neuropeptídeos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptores LHRH/genética , Estudos Retrospectivos
11.
Pediatr Res ; 78(6): 709-11, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26331766

RESUMO

BACKGROUND: Idiopathic central precocious puberty (ICPP) results from the premature reactivation of the hypothalamic-pituitary-gonadal axis leading to development of secondary sexual characteristics prior to 8 y in girls or 9 y in boys. Since the initial discovery of mutations in the maternally imprinted MKRN3 gene in 2013, several case reports have described mutations in this gene in ICPP patients from different populations, highlighting the importance of MKRN3 as a regulator of pubertal onset. METHODS: We screened 29 Danish girls with ICPP for mutations in MKRN3. Expression of MKRN3 in human hypothalamic complementary DNA (cDNA) was investigated by PCR. RESULTS: One paternally inherited rare variant, c.1034G>A (p.Arg345His), was identified in one girl with ICPP and in her brother with early puberty. The variant is predicted to be deleterious by three different in silico prediction programs. Expression of MKRN3 was confirmed in adult human hypothalamus. CONCLUSION: Our results are in line with previous studies in which paternally inherited MKRN3 mutations have been found both in males and in females with ICPP or early puberty. Our report further expands the set of MKRN3 mutations identified in ICPP patients across diverse populations, thus supporting the major regulatory function of MKRN3 in pubertal onset.


Assuntos
Pai , Mutação de Sentido Incorreto , Puberdade Precoce/genética , Puberdade/genética , Ribonucleoproteínas/genética , Irmãos , Fatores Etários , Criança , Simulação por Computador , Análise Mutacional de DNA , Dinamarca , Feminino , Predisposição Genética para Doença , Hormônio Liberador de Gonadotropina/análogos & derivados , Hormônio Liberador de Gonadotropina/uso terapêutico , Hereditariedade , Humanos , Masculino , Modelos Genéticos , Linhagem , Fenótipo , Puberdade/efeitos dos fármacos , Puberdade Precoce/diagnóstico , Puberdade Precoce/tratamento farmacológico , Puberdade Precoce/fisiopatologia , Fatores de Risco , Resultado do Tratamento , Ubiquitina-Proteína Ligases
12.
Genet Med ; 17(8): 651-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25394172

RESUMO

PURPOSE: Congenital hypogonadotropic hypogonadism (CHH) and split hand/foot malformation (SHFM) are two rare genetic conditions. Here we report a clinical entity comprising the two. METHODS: We identified patients with CHH and SHFM through international collaboration. Probands and available family members underwent phenotyping and screening for FGFR1 mutations. The impact of identified mutations was assessed by sequence- and structure-based predictions and/or functional assays. RESULTS: We identified eight probands with CHH with (n = 3; Kallmann syndrome) or without anosmia (n = 5) and SHFM, seven of whom (88%) harbor FGFR1 mutations. Of these seven, one individual is homozygous for p.V429E and six individuals are heterozygous for p.G348R, p.G485R, p.Q594*, p.E670A, p.V688L, or p.L712P. All mutations were predicted by in silico analysis to cause loss of function. Probands with FGFR1 mutations have severe gonadotropin-releasing hormone deficiency (absent puberty and/or cryptorchidism and/or micropenis). SHFM in both hands and feet was observed only in the patient with the homozygous p.V429E mutation; V429 maps to the fibroblast growth factor receptor substrate 2α binding domain of FGFR1, and functional studies of the p.V429E mutation demonstrated that it decreased recruitment and phosphorylation of fibroblast growth factor receptor substrate 2α to FGFR1, thereby resulting in reduced mitogen-activated protein kinase signaling. CONCLUSION: FGFR1 should be prioritized for genetic testing in patients with CHH and SHFM because the likelihood of a mutation increases from 10% in the general CHH population to 88% in these patients.


Assuntos
Hipogonadismo/congênito , Hipogonadismo/genética , Deformidades Congênitas dos Membros/genética , Mutação , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Sequência Conservada , Feminino , Estudos de Associação Genética , Humanos , Hipogonadismo/metabolismo , Deformidades Congênitas dos Membros/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Linhagem , Fosforilação , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo
13.
Clin Endocrinol (Oxf) ; 82(1): 122-6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24841555

RESUMO

OBJECTIVE: In search of phenotypic cues that would allow early detection of Kallmann syndrome (KS), we evaluated the paediatric phenotypes in a series of females with KS. DESIGN, PATIENTS AND MEASUREMENTS: In this retrospective cohort study, we investigated childhood growth in six females with KS due to mutations in FGFR1 and evaluated their reproductive phenotypes later in life. RESULTS: While growth during early infancy and childhood was within normal limits, a decreasing trend in height SDS already from mid-childhood occurred in most patients. The lowest height SDS (mean, -1·2 SDS) occurred between 14 and 15 years of age, before the start of hormone replacement therapy. As adults, these women required assisted reproductive techniques for fertility. One of the probands passed on her G48S mutation to her son, who showed normal reproductive hormone levels during the minipuberty of infancy. CONCLUSIONS: Early diagnosis of female KS remains a challenge as early phenotypic signs, apart from anosmia, are scarce. Females with KS exhibit a slight reduction in growth rate during mid-childhood, but normal growth rate during the minipuberty of infancy, despite congenital lack of ovarian oestrogen. Women harbouring FGFR1 mutations will have 50% chance of passing on the gene defect to their offspring. We recommend genetic counselling to all females with KS to be carried out as a part of family planning.


Assuntos
Estatura/genética , Síndrome de Kallmann/fisiopatologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Adulto , Diagnóstico Precoce , Feminino , Humanos , Síndrome de Kallmann/diagnóstico , Síndrome de Kallmann/genética , Fenótipo , Estudos Retrospectivos
14.
Eur J Med Genet ; 57(7): 345-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24732674

RESUMO

Congenital hypogonadotropic hypogonadism (CHH) is a rare disorder characterized by incomplete/absent puberty caused by deficiency or defective action of gonadotropin-releasing hormone (GnRH). The phenotypic features of patients with CHH vary from genital hypoplasia and absent puberty to reversal of HH later in life. We examined the genetics and clinical features of CHH in Denmark. Forty-one male patients were screened for mutations in KAL1, FGFR1, FGF8, PROK2, PROKR2, GNRHR, TAC3, TACR3, and KISS1R. CHD7 was screened in two patients with hearing loss. In 12 patients, a molecular genetic cause for CHH was found. Four patients had mutations in KAL1 (C105VfsX13, C53X, ex5-8del, R257X), and five in FGFR1 (G97S, R209C, A512V, R646W, and c.1614C>T, (p.I538I), predicted to affect splicing). All 9 had severe HH (cryptorchidism and/or micropenis), and 2 had cleft lip/palate. One patient with a previously reported homozygous R262Q mutation in GNRHR displayed fascinating temporal variation in his phenotype. Two patients with hearing loss had CHD7 mutations (c.7832_7841del (p.K2611MfsX25) and c.2443-2A>C), confirming that CHH patients with CHARGE syndrome-associated features should be screened for mutations in CHD7.


Assuntos
DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Proteínas da Matriz Extracelular/genética , Hipogonadismo/genética , Proteínas do Tecido Nervoso/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptores LHRH/genética , Dinamarca , Doenças Genéticas Inatas/genética , Humanos , Masculino , Mutação
16.
Pediatr Res ; 75(5): 641-4, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24522099

RESUMO

BACKGROUND: Congenital hypogonadotropic hypogonadism (HH), a rare disorder characterized by absent, partial, or delayed puberty, can be caused by the lack or deficient number of hypothalamic gonadotropin-releasing hormone (GnRH) neurons. SEMA3A was recently implicated in the etiology of the disorder, and Sema7A-deficient mice have a reduced number of GnRH neurons in their brains. METHODS: SEMA3A and SEMA7A were screened by Sanger sequencing in altogether 50 Finnish HH patients (34 with Kallmann syndrome (KS; HH with hyposmia/anosmia) and 16 with normosmic HH (nHH)). In 20 patients, mutation(s) had already been found in genes known to be implicated in congenital HH. RESULTS: Three heterozygous variants (c.458A>G (p.Asn153Ser), c.1253A>G (p.Asn418Ser), and c.1303G>A (p.Val435Ile)) were found in SEMA3A in three KS patients, two of which also had a mutation in FGFR1. Two rare heterozygous variants (c.442C>T (p.Arg148Trp) and c.1421G>A (p.Arg474Gln)) in SEMA7A were found in one male nHH patient with a previously identified KISS1R nonsense variant and one male KS patient with a previously identified mutation in KAL1, respectively. CONCLUSION: Our results suggest that heterozygous missense variants in SEMA3A and SEMA7A may modify the phenotype of KS but most likely are not alone sufficient to cause the disorder.


Assuntos
Antígenos CD/genética , Hipogonadismo/congênito , Hipogonadismo/genética , Síndrome de Kallmann/genética , Semaforina-3A/genética , Semaforinas/genética , Análise Mutacional de DNA , Feminino , Finlândia , Proteínas Ligadas por GPI/genética , Variação Genética , Hormônio Liberador de Gonadotropina/metabolismo , Heterozigoto , Humanos , Masculino , Mutação , Mutação de Sentido Incorreto , Neurônios/metabolismo , Fenótipo
17.
J Neurol Neurosurg Psychiatry ; 85(3): 345-53, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23606733

RESUMO

OBJECTIVE: Several families with characteristic features of hereditary myopathy with early respiratory failure (HMERF) have remained without genetic cause. This international study was initiated to clarify epidemiology and the genetic underlying cause in these families, and to characterise the phenotype in our large cohort. METHODS: DNA samples of all currently known families with HMERF without molecular genetic cause were obtained from 12 families in seven different countries. Clinical, histopathological and muscle imaging data were collected and five biopsy samples made available for further immunohistochemical studies. Genotyping, exome sequencing and Sanger sequencing were used to identify and confirm sequence variations. RESULTS: All patients with clinical diagnosis of HMERF were genetically solved by five different titin mutations identified. One mutation has been reported while four are novel, all located exclusively in the FN3 119 domain (A150) of A-band titin. One of the new mutations showed semirecessive inheritance pattern with subclinical myopathy in the heterozygous parents. Typical clinical features were respiratory failure at mid-adulthood in an ambulant patient with very variable degree of muscle weakness. Cytoplasmic bodies were retrospectively observed in all muscle biopsy samples and these were reactive for myofibrillar proteins but not for titin. CONCLUSIONS: We report an extensive collection of families with HMERF with five different mutations in exon 343 of TTN, which establishes this exon as the primary target for molecular diagnosis of HMERF. Our relatively large number of new families and mutations directly implies that HMERF is not extremely rare, not restricted to Northern Europe and should be considered in undetermined myogenic respiratory failure.


Assuntos
Doenças Genéticas Inatas/epidemiologia , Doenças Musculares/epidemiologia , Insuficiência Respiratória/epidemiologia , Adulto , Idoso , Conectina/genética , Exoma/genética , Feminino , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Ligação Genética/genética , Predisposição Genética para Doença/genética , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Doenças Musculares/genética , Doenças Musculares/patologia , Mutação/genética , Linhagem , Fenótipo , Insuficiência Respiratória/genética , Insuficiência Respiratória/patologia
19.
Fertil Steril ; 99(3): 815-8, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23200691

RESUMO

OBJECTIVE: To investigate the inheritance pattern of two missense PROKR2 changes within a single family. DESIGN: This is a descriptive study. SETTING: Tertiary referral center. PATIENT(S): The proband and his brother, both with congenital hypogonadotropic hypogonadism and anosmia (Kallmann syndrome). INTERVENTION(S): Clinical and biochemical evaluation of Kallmann syndrome. Sequence analysis of the coding exons and exon-intron boundaries of KAL1, FGFR1, FGF8, PROK2, and PROKR2 from polymerase chain reaction (PCR)-amplified genomic DNA. Recombinant human FSH treatment of the proband. MAIN OUTCOME MEASURE(S): Phenotypic and genotypic features, and inhibin B response to recombinant human FSH. RESULT(S): The proband and his brother were homozygous for two variants in PROKR2; a novel mutation c.701G>A (p.G234D), and a polymorphism c.802C>T (p.R268C). Recombinant human FSH therapy of the proband increased serum inhibin B from <16 to 136 ng/L. The heterozygous parents were fertile and had six children. CONCLUSION(S): These findings are consistent with recessive mode of inheritance. PROKR2 signaling does not directly affect Sertoli cell function.


Assuntos
Síndrome de Kallmann/genética , Mutação de Sentido Incorreto , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genética , Adolescente , Saúde da Família , Feminino , Genótipo , Humanos , Masculino , Fenótipo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Células de Sertoli/fisiologia , Irmãos , Transdução de Sinais/genética
20.
PLoS One ; 7(6): e39450, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22724017

RESUMO

BACKGROUND: Congenital hypogonadotropic hypogonadism (HH) is a rare cause for delayed or absent puberty. These patients may recover from HH spontaneously in adulthood. To date, it is not possible to predict who will undergo HH reversal later in life. Herein we investigated whether Finnish patients with reversal of congenital hypogonadotropic hypogonadism (HH) have common phenotypic or genotypic features. METHODS AND FINDINGS: Thirty-two male HH patients with anosmia/hyposmia (Kallmann Syndrome, KS; n = 26) or normal sense of smell (nHH; n = 6) were enrolled (age range, 18-61 yrs). The patients were clinically examined, and reversal of HH was assessed after treatment withdrawal. KAL1, FGFR1, FGF8, PROK2, PROKR2, CHD7, WDR11, GNRHR, GNRH1, KISS1R, KISS1, TAC3, TACR3, and LHß were screened for mutations. Six HH patients (2 KS, 4 nHH) were verified to have reversal of HH. In the majority of cases, reversal occurred early in adulthood (median age, 23 yrs; range, 21-39 yrs). All had spontaneous testicular growth while on testosterone replacement therapy (TRT). One nHH subject was restarted on TRT due to a decline in serum T. Two reversal variants had a same GNRHR mutation (R262Q), which was accompanied by another GNRHR mutation (R139H or del309F). In addition, both of the KS patients had a mutation in CHD7 (p.Q51X) or FGFR1 (c.91+2T>A). CONCLUSIONS: Considerable proportion of patients with HH (8% of KS probands) may recover in early adulthood. Spontaneous testicular enlargement during TRT was highly suggestive for reversal of HH. Those with the GNRHR mutation R262Q accompanied by another GNRHR mutation may be prone to reversal, although even patients with a truncating mutation in CHD7 or a splice-site mutation in FGFR1 can recover. We recommend that all adolescents and young adults with congenital HH should be informed on the possibility of reversal.


Assuntos
DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Hipogonadismo/congênito , Hipogonadismo/genética , Mutação , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptores LHRH/genética , Adolescente , Adulto , Genótipo , Terapia de Reposição Hormonal , Humanos , Hipogonadismo/terapia , Síndrome de Kallmann/genética , Masculino , Fenótipo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...