Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 24(10): e14055, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37261720

RESUMO

PURPOSE: Deep learning-based virtual patient-specific quality assurance (QA) is a novel technique that enables patient QA without measurement. However, this method could be improved by further evaluating the optimal data to be used as input. Therefore, a deep learning-based model that uses multileaf collimator (MLC) information per control point and dose distribution in patient's CT as inputs was developed. METHODS: Overall, 96 volumetric-modulated arc therapy plans generated for prostate cancer treatment were used. We developed a model (Model 1) that can predict measurement-based gamma passing rate (GPR) for a treatment plan using data stored as a map reflecting the MLC leaf position at each control point (MLPM) and data of the dose distribution in patient's CT as inputs. The evaluation of the model was based on the mean absolute error (MAE) and Pearson's correlation coefficient (r) between the measured and predicted GPR. For comparison, we also analyzed models trained with the dose distribution in patient's CT alone (Model 2) and with dose distributions recalculated on a virtual phantom CT (Model 3). RESULTS: At the 2%/2 mm criterion, MAE[%] and r for Model 1, Model 2, and Model 3 were 2.32% ± 0.43% and 0.54 ± 0.03, 2.70% ± 0.26%, and 0.32 ± 0.08, and 2.96% ± 0.23% and 0.24 ± 0.22, respectively; at the 3%/3 mm criterion, these values were 1.25% ± 0.05% and 0.36 ± 0.18, 1.57% ± 0.35% and 0.19 ± 0.20, and 1.39% ± 0.32% and 0.17 ± 0.22, respectively. This result showed that Model 1 exhibited the lowest MAE and highest r at both criteria of 2%/2 mm and 3%3 mm. CONCLUSIONS: These findings showed that a model that combines the MLPM and dose distribution in patient's CT exhibited a better GPR prediction performance compared with the other two studied models.


Assuntos
Aprendizado Profundo , Neoplasias da Próstata , Radioterapia de Intensidade Modulada , Masculino , Humanos , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias da Próstata/radioterapia , Próstata , Dosagem Radioterapêutica
2.
Med Phys ; 48(9): 4769-4783, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34101848

RESUMO

PURPOSE: In patient-specific quality assurance (QA) for static beam intensity-modulated radiation therapy (IMRT), machine-learning-based dose analysis methods have been developed to identify the cause of an error as an alternative to gamma analysis. Although these new methods have revealed that the cause of the error can be identified by analyzing the dose distribution obtained from the two-dimensional detector, they have not been extended to the analysis of volumetric-modulated arc therapy (VMAT) QA. In this study, we propose a deep learning approach to detect various types of errors in patient-specific VMAT QA. METHODS: A total of 161 beams from 104 prostate VMAT plans were analyzed. All beams were measured using a cylindrical detector (Delta4; ScandiDos, Uppsala, Sweden), and predicted dose distributions in a cylindrical phantom were calculated using a treatment planning system (TPS). In addition to the error-free plan, we simulated 12 types of errors: two types of multileaf collimator positional errors (systematic or random leaf offset of 2 mm), two types of monitor unit (MU) scaling errors (±3%), two types of gantry rotation errors (±2° in clockwise and counterclockwise direction), and six types of phantom setup errors (±1 mm in lateral, longitudinal, and vertical directions). The error-introduced predicted dose distributions were created by editing the calculated dose distributions using a TPS with in-house software. Those 13 types of dose difference maps, consisting of an error-free map and 12 error maps, were created from the measured and predicted dose distributions and were used to train the convolutional neural network (CNN) model. Our model was a multi-task model that individually detected each of the 12 types of errors. Two datasets, Test sets 1 and 2, were prepared to evaluate the performance of the model. Test set 1 consisted of 13 types of dose maps used for training, whereas Test set 2 included the dose maps with 25 types of errors in addition to the error-free dose map. The dose map, which introduced 25 types of errors, was generated by combining two of the 12 types of simulated errors. For comparison with the performance of our model, gamma analysis was performed for Test sets 1 and 2 with the criteria set to 3%/2 mm and 2%/1 mm (dose difference/distance to agreement). RESULTS: For Test set 1, the overall accuracy of our CNN model, gamma analysis with the criteria set to 3%/2 mm, and gamma analysis with the criteria set to 2%/1 mm was 0.92, 0.19, and 0.81, respectively. Similarly, for Test set 2, the overall accuracy was 0.44, 0.42, and 0.95, respectively. Our model outperformed gamma analysis in the classification of dose maps containing a single type error, and the performance of our model was inferior in the classification of dose maps containing compound errors. CONCLUSIONS: A multi-task CNN model for detecting errors in patient-specific VMAT QA using a cylindrical measuring device was constructed, and its performance was evaluated. Our results demonstrate that our model was effective in identifying the error type in the dose map for VMAT QA.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Aprendizado de Máquina , Masculino , Redes Neurais de Computação , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
3.
Med Phys ; 48(3): 1003-1018, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33368406

RESUMO

PURPOSE: This study aimed to develop and evaluate a novel strategy for establishing a deep learning-based gamma passing rate (GPR) prediction model for volumetric modulated arc therapy (VMAT) using dummy target plan data, one measurement process, and a multicriteria prediction method. METHODS: A total of 147 VMAT plans were used for the training set (two sets of 48 dummy target plans) and test set (51 clinical target plans). The dummy plans were measured using a diode array detector. We developed an original convolutional neural network that accepts coronal and sagittal dose distributions to predict the GPRs of 36 pairs of gamma criteria from 0.5%/0.5 mm to 3%/3 mm. Sixfold cross-validation and model averaging were performed, and the mean training result and mean test result were derived from six trained models that were produced during cross-validation. RESULTS: Strong or moderate correlations were observed between the measured and predicted GPRs in all criteria. The mean absolute errors and root mean squared errors of the test set (clinical target plan) were 0.63 and 1.11 in 3%/3 mm, 1.16 and 1.73 in 3%/2 mm, 1.96 and 2.66 in 2%/2 mm, 5.00 and 6.35 in 1%/1 mm, and 5.42 and 6.78 in 0.5%/1 mm, respectively. The Pearson correlation coefficients were 0.80 in the training set and 0.68 in the test set at the 0.5%/1 mm criterion. CONCLUSION: Our results suggest that the training of the deep learning-based quality assurance model can be performed using a dummy target plan.


Assuntos
Aprendizado Profundo , Radioterapia de Intensidade Modulada , Raios gama , Humanos , Redes Neurais de Computação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
4.
Phys Med ; 73: 57-64, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32330812

RESUMO

The aim of this study was to evaluate the use of dose difference maps with a convolutional neural network (CNN) to detect multi-leaf collimator (MLC) positional errors in patient-specific quality assurance for volumetric modulated radiation therapy (VMAT). A cylindrical three-dimensional detector (Delta4, ScandiDos, Uppsala, Sweden) was used to measure 161 beams from 104 clinical prostate VMAT plans. For the simulation used error-free plans plus plans with two types of MLC error were introduced: systematic error and random error. A total of 483 dose distributions in a virtual cylindrical phantom were calculated with a treatment planning system. Dose difference maps were created from two planar dose distributions from the measured and calculated dose distributions, and these were used as the input for the CNN, with 375 datasets assigned for training and 108 datasets assigned for testing. The CNN model had three convolution layers and was trained with five-fold cross-validation. The CNN model classified the error types of the plans as "error-free," "systematic error," or "random error," with an overall accuracy of 0.944. The sensitivity values for the "error-free," "systematic error," and "random error" classifications were 0.889, 1.000, and 0.944, respectively, and the specificity values were 0.986, 0.986, and 0.944, respectively. This approach was superior to those based on gamma analysis. Using dose difference maps with a CNN model may provide an effective solution for detecting MLC errors for patient-specific VMAT quality assurance.


Assuntos
Redes Neurais de Computação , Garantia da Qualidade dos Cuidados de Saúde , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada , Bases de Dados Factuais , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica
5.
J Radiat Res ; 60(5): 685-693, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31322704

RESUMO

The purpose of the study was to compare a 3D convolutional neural network (CNN) with the conventional machine learning method for predicting intensity-modulated radiation therapy (IMRT) dose distribution using only contours in prostate cancer. In this study, which included 95 IMRT-treated prostate cancer patients with available dose distributions and contours for planning target volume (PTVs) and organs at risk (OARs), a supervised-learning approach was used for training, where the dose for a voxel set in the dataset was defined as the label. The adaptive moment estimation algorithm was employed for optimizing a 3D U-net similar network. Eighty cases were used for the training and validation set in 5-fold cross-validation, and the remaining 15 cases were used as the test set. The predicted dose distributions were compared with the clinical dose distributions, and the model performance was evaluated by comparison with RapidPlan™. Dose-volume histogram (DVH) parameters were calculated for each contour as evaluation indexes. The mean absolute errors (MAE) with one standard deviation (1SD) between the clinical and CNN-predicted doses were 1.10% ± 0.64%, 2.50% ± 1.17%, 2.04% ± 1.40%, and 2.08% ± 1.99% for D2, D98 in PTV-1 and V65 in rectum and V65 in bladder, respectively, whereas the MAEs with 1SD between the clinical and the RapidPlan™-generated doses were 1.01% ± 0.66%, 2.15% ± 1.25%, 5.34% ± 2.13% and 3.04% ± 1.79%, respectively. Our CNN model could predict dose distributions that were superior or comparable with that generated by RapidPlan™, suggesting the potential of CNN in dose distribution prediction.


Assuntos
Redes Neurais de Computação , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada , Algoritmos , Relação Dose-Resposta à Radiação , Humanos , Masculino
6.
Med Phys ; 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30066388

RESUMO

PURPOSE: Patient-specific quality assurance (QA) measurement is conducted to confirm the accuracy of dose delivery. However, measurement is time-consuming and places a heavy workload on the medical physicists and radiological technologists. In this study, we proposed a prediction model for gamma evaluation, based on deep learning. We applied the model to a QA measurement dataset of prostate cancer cases to evaluate its practicality. METHODS: Sixty pretreatment verification plans from prostate cancer patients treated using intensity modulated radiation therapy were collected. Fifteen-layer convolutional neural networks (CNN) were developed to learn the sagittal planar dose distributions from a RT-3000 QA phantom (R-TECH.INC., Tokyo, Japan). The percentage gamma passing rate (GPR) was measured using GAFCHROMIC EBT3 film (Ashland Specialty Ingredients, Covington, USA). The input training data also included the volume of the PTV (planning target volume), rectum, and overlapping region, measured in cm3 , and the monitor unit values for each field. The network produced predicted GPR values at four criteria: 2%(global)/2 mm, 3%(global)/2 mm, 2%(global)/3 mm, and 3%(global)/3 mm. Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, was used for learning and for optimizing the CNN-based model. Fivefold cross-validation was applied to validate the performance of the proposed method. Forty cases were used for training and validation set in fivefold cross-validation, and the remaining 20 cases were used for the test set. The predicted and measured GPR values were compared. RESULTS: A linear relationship was found between the measured and predicted values, for each of the four criteria. Spearman rank correlation coefficients in validation set between measured and predicted GPR values at four criteria were 0.73 at 2%/2 mm, 0.72 at 3%/2 mm, 0.74 at 2%/3 mm, and 0.65 at 3%/3 mm, respectively (P < 0.01). The Spearman rank correlation coefficients in the test set were 0.62 (P < 0.01) at 2%/2 mm, 0.56 (P < 0.01) at 3%/2 mm, 0.51 (P = 0.02) at 2%/3 mm, and 0.32 (P = 0.16) at 3%/3 mm. These results demonstrated a strong or moderate correlation between the predicted and measured values. CONCLUSIONS: We developed a CNN-based prediction model for patient-specific QA of dose distribution in prostate treatment. Our results suggest that deep learning may provide a useful prediction model for gamma evaluation of patient-specific QA in prostate treatment planning.

7.
Radiol Phys Technol ; 11(3): 320-327, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30109572

RESUMO

The quality of radiotherapy has greatly improved due to the high precision achieved by intensity-modulated radiation therapy (IMRT). Studies have been conducted to increase the quality of planning and reduce the costs associated with planning through automated planning method; however, few studies have used the deep learning method for optimization of planning. The purpose of this study was to propose an automated method based on a convolutional neural network (CNN) for predicting the dosimetric eligibility of patients with prostate cancer undergoing IMRT. Sixty patients with prostate cancer who underwent IMRT were included in the study. Treatment strategy involved division of the patients into two groups, namely, meeting all dose constraints and not meeting all dose constraints, by experienced medical physicists. We used AlexNet (i.e., one of common CNN architectures) for CNN-based methods to predict the two groups. An AlexNet CNN pre-trained on ImageNet was fine-tuned. Two dataset formats were used as input data: planning computed tomography (CT) images and structure labels. Five-fold cross-validation was used, and performance metrics included sensitivity, specificity, and prediction accuracy. Class activation mapping was used to visualize the internal representation learned by the CNN. Prediction accuracies of the model with the planning CT image dataset and that with the structure label dataset were 56.7 ± 9.7% and 70.0 ± 11.3%, respectively. Moreover, the model with structure labels focused on areas associated with dose constraints. These results revealed the potential applicability of deep learning to the treatment planning of patients with prostate cancer undergoing IMRT.


Assuntos
Redes Neurais de Computação , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada , Automação , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Radiometria , Dosagem Radioterapêutica , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...