Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(9): e202216874, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36460617

RESUMO

A long-standing quest in materials science has been the development of tough epoxy resin nanocomposites for use in numerous applications. Inspired by nacre, here we report tough and conductive MXene/epoxy layered bulk nanocomposites. The orientation of MXene lamellar scaffolds is enhanced by annealing treatment. The improved interfacial interactions between MXene lamellar scaffold and epoxy through surface chemical modification resulted in a synergistic effect. Tailoring the interlayer spacing of MXene nanosheets to a critical distance resulted in a fracture toughness about eight times higher than that of pure epoxy, surpassing other epoxy nanocomposites. Our nacre-inspired MXene/epoxy layered bulk nanocomposites also show high electrical conductivity that provides self-monitoring capability for structural integrity and exhibits an excellent electromagnetic interference shielding efficiency. Our proposed strategy provides an avenue for fabricating high-performance epoxy nanocomposites.

2.
Proc Natl Acad Sci U S A ; 119(49): e2211458119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442101

RESUMO

Natural structural materials typically feature complex hierarchical anisotropic architectures, resulting in excellent damage tolerance. Such highly anisotropic structures, however, also provide an easy path for crack propagation, often leading to catastrophic fracture as evidenced, for example, by wood splitting. Here, we describe the weakly anisotropic structure of Ginkgo biloba (ginkgo) seed shell, which has excellent crack resistance in different directions. Ginkgo seed shell is composed of tightly packed polygonal sclereids with cell walls in which the cellulose microfibrils are oriented in a helicoidal pattern. We found that the sclereids contain distinct pits, special fine tubes like a "screw fastener," that interlock the helicoidal cell walls together. As a result, ginkgo seed shell demonstrates crack resistance in all directions, exhibiting specific fracture toughness that can rival other highly anisotropic natural materials, such as wood, bone, insect cuticle, and nacre. In situ characterization reveals ginkgo's unique toughening mechanism: pit-guided crack propagation. This mechanism forces the crack to depart from the weak compound middle lamella and enter into the sclereid, where the helicoidal cell wall significantly inhibits crack growth by the cleavage and breakage of the fibril-based cell walls. Ginkgo's toughening mechanism could provide guidelines for a new bioinspired strategy for the design of high-performance bulk materials.


Assuntos
Fraturas Ósseas , Ginkgo biloba , Sementes , Parede Celular , Madeira
3.
Acc Chem Res ; 55(11): 1492-1502, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35588442

RESUMO

Using a limited selection of ordinary components and at ambient temperature, nature has managed to produce a wide range of incredibly diverse materials with astonishingly elegant and complex architectures. Probably the most famous example is nacre, or mother-of-pearl, the inner lining of the shells of abalone and certain other mollusks. Nacre is 95% aragonite, a hard but brittle calcium carbonate mineral, that exhibits fracture toughness exceedingly greater than that of pure aragonite, when tested in the direction perpendicular to the platelets. No human-made composite outperforms its constituent materials by such a wide margin. Nature's unique ability to combine the desirable properties of components into a material that performs significantly better than the sum of its parts has sparked strong interest in bioinspired materials design.Inspired by this complex hierarchical architecture, many processing routes have been proposed to replicate one or several of these features. New processing techniques point to a number of laboratory successes that hold promise in mimicking nacre. We pioneered one of them, ice templating, in 2006. When a suspension of particles is frozen, particles are rejected by the growing ice crystals and concentrate in the space between the crystals. After the ice is freeze-dried, the resulting scaffold is a porous body that can eventually be pressed to increase the density and then be infiltrated with a second phase, providing multilayered, lamellar complex composites with a microstructure reminiscent of nacre. The composites exhibit a marked crack deflection during crack propagation, enhancing the damage resistance of the materials, offering an interesting trade-off of strength and toughness.Freezing as a path to build complex composites has turned out to be a rich line of research and development. Understanding and controlling the freezing routes and associated phenomena has become a multidisciplinary endeavor. A step forward in the complexity was achieved with the use of anisotropic particles. Ice-induced segregation and alignment of platelets can yield dense, inorganic composites (nacre-like alumina) with a complex architecture and microstructure, replicating several of the morphological features of nacre. Now, a different class of complex composites is quickly arising: engineered living materials, developed in the soft matter and biology communities. The material-agnostic nature of the freezing routes, the use of an aqueous system, the absence of organic solvents, and the low temperatures being used are all strong assets for the development of such complex composites. More complex building blocks, such as cells or bacteria, can be frozen. Understanding the fundamental mechanisms controlling the interactions between the ice crystals and the objects as well as the interactions between the soft objects themselves and their fate is essential in this context.In this Account, we highlight our efforts over the past decade to achieve the controlled synthesis of nacre-like composites and understand the associated processes and properties. We describe the unique hierarchical and chemical structure of nacre and the fabrication strategies for processing nacre-like composites. We also try to explain why natural materials work so well and see how we can implement these lessons in synthetic composites. Finally, we provide an outlook on the new trends and ongoing challenges in this field. We hope that this Account will inspire future developments in the field of ice templating and bioinspired materials.


Assuntos
Materiais Biomiméticos , Nácar , Carbonato de Cálcio/química , Congelamento , Gelo , Nácar/química
4.
Nat Commun ; 12(1): 4539, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315892

RESUMO

Polydimethylsiloxane (PDMS) is a widely used soft material that exhibits excellent stability and transparency. But the difficulty of fine-tuning its Young's modulus and its low toughness significantly hinder its application in fields such as tissue engineering and flexible devices. Inspired by nacre, here we report on the development of PDMS-montmorillonite layered (PDMS-MMT-L) nanocomposites via the ice-templating technique, resulting in 23 and 12 times improvement in Young's modulus and toughness as compared with pure PDMS. Confocal fluorescence microscopy assisted by aggregation-induced emission (AIE) luminogens reveals three-dimensional reconstruction and in situ crack tracing of the nacre-inspired PDMS-MMT-L nanocomposite. The PDMS-MMT-L nanocomposite is toughened with mechanisms such as crack deflection and bridging. The AIE-assisted visualization of the crack propagation for nacre-inspired layered nanocomposites provides an advanced and universal characterization technique for organic-inorganic nanocomposites.

5.
Angew Chem Int Ed Engl ; 60(26): 14307-14312, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33793046

RESUMO

Bioinspired dynamic structural color has great potential for use in dynamic displays, sensors, cryptography, and camouflage. However, it is quite rare for artificial structural color devices to withstand thousands of cycles. Male hummingbird's crowns and gorgets are brightly colored, demonstrating frequent color switching that is induced by regulating the orientation of the feathers through movement of skin or joints. Inspired by this unique structural color modulation, we demonstrate a flexible, mechanically triggered color switchable sheet based on a photonic crystal (PhC)-coated polydimethylsiloxane (PDMS) kirigami (PhC-PDMS kirigami) made by laser cutting. Finite element modeling (FEM) simulation reveals that the thickness of PDMS kirigami and the chamfer at the incision induced by laser cutting both dominate the out-of-plane deformation through in-plane stretching. The bioinspired PhC-PDMS kirigami shows precisely programmable structural color and keeps the color very well after recycling over 10 000 times. This bioinspired PhC-PDMS kirigami also shows excellent viewability even in bright sunlight, high readability, robust functionality, technical flexibility, and mechanical durability, which are readily exploitable for applications, such as chromic mechanical monitors for the sports industry or for medical applications, wearable camouflage, and security systems.

6.
Proc Natl Acad Sci U S A ; 117(44): 27154-27161, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33087567

RESUMO

Titanium carbide (Ti3C2Tx) MXene has great potential for use in aerospace and flexible electronics due to its excellent electrical conductivity and mechanical properties. However, the assembly of MXene nanosheets into macroscopic high-performance nanocomposites is challenging, limiting MXene's practical applications. Here we describe our work fabricating strong and highly conductive MXene sheets through sequential bridging of hydrogen and ionic bonding. The ionic bonding agent decreases interplanar spacing and increases MXene nanosheet alignment, while the hydrogen bonding agent increases interplanar spacing and decreases MXene nanosheet alignment. Successive application of hydrogen and ionic bonding agents optimizes toughness, tensile strength, oxidation resistance in a humid environment, and resistance to sonication disintegration and mechanical abuse. The tensile strength of these MXene sheets reaches up to 436 MPa. The electrical conductivity and weight-normalized shielding efficiency are also as high as 2,988 S/cm and 58,929 dB∙cm2/g, respectively. The toughening and strengthening mechanisms are revealed by molecular-dynamics simulations. Our sequential bridging strategy opens an avenue for the assembly of other high-performance MXene nanocomposites.

7.
Nature ; 582(7811): E4, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32523122

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Nat Commun ; 11(1): 2077, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350273

RESUMO

Flexible reduced graphene oxide (rGO) sheets are being considered for applications in portable electrical devices and flexible energy storage systems. However, the poor mechanical properties and electrical conductivities of rGO sheets are limiting factors for the development of such devices. Here we use MXene (M) nanosheets to functionalize graphene oxide platelets through Ti-O-C covalent bonding to obtain MrGO sheets. A MrGO sheet was crosslinked by a conjugated molecule (1-aminopyrene-disuccinimidyl suberate, AD). The incorporation of MXene nanosheets and AD molecules reduces the voids within the graphene sheet and improves the alignment of graphene platelets, resulting in much higher compactness and high toughness. In situ Raman spectroscopy and molecular dynamics simulations reveal the synergistic interfacial interaction mechanisms of Ti-O-C covalent bonding, sliding of MXene nanosheets, and π-π bridging. Furthermore, a supercapacitor based on our super-tough MXene-functionalized graphene sheets provides a combination of energy and power densities that are high for flexible supercapacitors.

9.
Proc Natl Acad Sci U S A ; 117(16): 8727-8735, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32253302

RESUMO

Graphene-based films with high toughness have many promising applications, especially for flexible energy storage and portable electrical devices. Achieving such high-toughness films, however, remains a challenge. The conventional mechanisms for improving toughness are crack arrest or plastic deformation. Herein we demonstrate black phosphorus (BP) functionalized graphene films with record toughness by combining crack arrest and plastic deformation. The formation of covalent bonding P-O-C between BP and graphene oxide (GO) nanosheets not only reduces the voids of GO film but also improves the alignment degree of GO nanosheets, resulting in high compactness of the GO film. After further chemical reduction and π-π stacking interactions by conjugated molecules, the alignment degree of rGO nanosheets was further improved, and the voids in lamellar graphene film were also further reduced. Then, the compactness of the resultant graphene films and the alignment degree of reduced graphene oxide nanosheets are further improved. The toughness of the graphene film reaches as high as ∼51.8 MJ m-3, the highest recorded to date. In situ Raman spectra and molecular dynamics simulations reveal that the record toughness is due to synergistic interactions of lubrication of BP nanosheets, P-O-C covalent bonding, and π-π stacking interactions in the resultant graphene films. Our tough black phosphorus functionalized graphene films with high tensile strength and excellent conductivity also exhibit high ambient stability and electromagnetic shielding performance. Furthermore, a supercapacitor based on the tough films demonstrated high performance and remarkable flexibility.

10.
Nature ; 580(7802): 210-215, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32269352

RESUMO

Biological materials, such as bones, teeth and mollusc shells, are well known for their excellent strength, modulus and toughness1-3. Such properties are attributed to the elaborate layered microstructure of inorganic reinforcing nanofillers, especially two-dimensional nanosheets or nanoplatelets, within a ductile organic matrix4-6. Inspired by these biological structures, several assembly strategies-including layer-by-layer4,7,8, casting9,10, vacuum filtration11-13 and use of magnetic fields14,15-have been used to develop layered nanocomposites. However, how to produce ultrastrong layered nanocomposites in a universal, viable and scalable manner remains an open issue. Here we present a strategy to produce nanocomposites with highly ordered layered structures using shear-flow-induced alignment of two-dimensional nanosheets at an immiscible hydrogel/oil interface. For example, nanocomposites based on nanosheets of graphene oxide and clay exhibit a tensile strength of up to 1,215 ± 80 megapascals and a Young's modulus of 198.8 ± 6.5 gigapascals, which are 9.0 and 2.8 times higher, respectively, than those of natural nacre (mother of pearl). When nanosheets of clay are used, the toughness of the resulting nanocomposite can reach 36.7 ± 3.0 megajoules per cubic metre, which is 20.4 times higher than that of natural nacre; meanwhile, the tensile strength is 1,195 ± 60 megapascals. Quantitative analysis indicates that the well aligned nanosheets form a critical interphase, and this results in the observed mechanical properties. We consider that our strategy, which could be readily extended to align a variety of two-dimensional nanofillers, could be applied to a wide range of structural composites and lead to the development of high-performance composites.


Assuntos
Materiais Biomiméticos/química , Materiais Biomiméticos/síntese química , Nanocompostos/química , Resistência à Tração , Módulo de Elasticidade , Grafite/química , Hidrogéis/química , Nácar/química
11.
Small ; 15(31): e1900573, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31131997

RESUMO

Many natural materials present an ideal "recipe" for the development of future damage-tolerant lightweight structural materials. One notable example is the brick-and-mortar structure of nacre, found in mollusk shells, which produces high-toughness, bioinspired ceramics using polymeric mortars as a compliant phase. Theoretical modeling has predicted that use of metallic mortars could lead to even higher damage-tolerance in these materials, although it is difficult to melt-infiltrate metals into ceramic scaffolds as they cannot readily wet ceramics. To avoid this problem, an alternative ("bottom-up") approach to synthesize "nacre-like" ceramics containing a small fraction of nickel mortar is developed. These materials are fabricated using nickel-coated alumina platelets that are aligned using slip-casting and rapidly sintered using spark-plasma sintering. Dewetting of the nickel mortar during sintering is prevented by using NiO-coated as well as Ni-coated platelets. As a result, a "nacre-like" alumina ceramic displaying a resistance-curve toughness up to ≈16 MPa m½ with a flexural strength of ≈300 MPa is produced.

12.
Nat Commun ; 10(1): 961, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814502

RESUMO

Bioinspired ceramics with micron-scale ceramic "bricks" bonded by a metallic "mortar" are projected to result in higher strength and toughness ceramics, but their processing is challenging as metals do not typically wet ceramics. To resolve this issue, we made alumina structures using rapid pressureless infiltration of a zirconium-based bulk-metallic glass mortar that reactively wets the surface of freeze-cast alumina preforms. The mechanical properties of the resulting Al2O3 with a glass-forming compliant-phase change with infiltration temperature and ceramic content, leading to a trade-off between flexural strength (varying from 89 to 800 MPa) and fracture toughness (varying from 4 to more than 9 MPa·m½). The high toughness levels are attributed to brick pull-out and crack deflection along the ceramic/metal interfaces. Since these mechanisms are enabled by interfacial failure rather than failure within the metallic mortar, the potential for optimizing these bioinspired materials for damage tolerance has still not been fully realized.

13.
Angew Chem Int Ed Engl ; 58(23): 7636-7640, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-30903667

RESUMO

Epoxy nanocomposites combining high toughness with advantageous functional properties are needed in many fields. However, fabricating high-performance homogeneous epoxy nanocomposites with traditional methods remains a great challenge. Nacre with outstanding fracture toughness presents an ideal blueprint for the development of future epoxy nanocomposites. Now, high-performance epoxy-graphene layered nanocomposites were demonstrated with ultrahigh toughness and temperature-sensing properties. These nanocomposites are composed of ca. 99 wt % organic epoxy, which is in contrast to the composition of natural nacre (ca. 96 wt % inorganic aragonite). These nanocomposites are named an inverse artificial nacre. The fracture toughness reaches about 4.2 times higher than that of pure epoxy. The electrical resistance is temperature-sensitive and stable under various humidity conditions. This strategy opens an avenue for fabricating high-performance epoxy nanocomposites with functional properties.

14.
J Biomed Mater Res B Appl Biomater ; 107(3): 818-824, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30195262

RESUMO

The repair and regeneration of loaded segmental bone defects is a challenge for both materials and biomedical science communities. Our recent work demonstrated the capability of bioactive glass in supporting bone healing and defect bridging using a rabbit femur segmental defect model without growth factors or bone marrow stromal cells (BMSCs). Here in the current work, a comprehensive in vitro evaluation of bioactive silicate (13-93) and borosilicate (2B6Sr) glass scaffolds was conducted to provide further understanding of their biological performances and to establish a correlation between in vitro and in vivo behaviors. Our in vitro evaluation using a murine MC3T3-E1 cell line confirmed the capability of both scaffolds to support cell attachment, vascular endothelial growth factor (VEGF) formation, and to stimulate mineral deposition and osteoblast marker gene expression. In particular, borosilicate (2B6Sr) glass showed a better capability in supporting the mineralization and gene expression than silicate (13-93) glass, consistent with a faster bone healing ability in vivo. The current in vitro results, combined with our previous in vivo findings, provide a strong basis for the further translational evaluation of bioactive glass scaffolds and for potential preclinical practice. © 2018 Wiley Periodicals, Inc. J. Biomed. Mater. Res. Part B, 2018. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 818-824, 2019.


Assuntos
Calcificação Fisiológica , Vidro/química , Teste de Materiais , Osteoblastos/metabolismo , Impressão Tridimensional , Silicatos/química , Alicerces Teciduais/química , Animais , Linhagem Celular , Camundongos , Osteoblastos/citologia
15.
ACS Nano ; 12(12): 12638-12645, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30462484

RESUMO

Graphene-based fibers synthesized under ambient temperature have not achieved excellent mechanical properties of high toughness or tensile strength compared with those synthesized by hydrothermal strategy or graphitization and annealing treatment. Inspired by the relationship between organic/inorganic hierarchical structure, interfacial interactions, and moderate growth temperature of natural nacre, we fabricate an ultratough graphene fiber via sequential toughening of hydrogen and ionic bonding through a wet-spinning method under ambient temperature. A slight amount of chitosan is introduced to form hydrogen bonding with graphene oxide nanosheets, and the ionic bonding is formed between graphene oxide nanosheets and divalent calcium ions. The optimized sequential toughening of hydrogen and ionic bonding results in an ultratough graphene fiber with toughness of 26.3 MJ/m3 and ultimate tensile strength of 743.6 MPa. Meanwhile, the electrical conductivity of the resultant graphene fiber is as high as 179.0 S/cm. This kind of multifunctional graphene fiber shows promising applications in photovoltaic wires, flexible supercapacitor electrodes, wearable electronic textiles, fiber motors, etc. Furthermore, the strategy of sequential toughening of hydrogen and ionic bonding interactions also offers an avenue for constructing high-performance graphene-based fibers in the near future.


Assuntos
Cálcio/química , Grafite/química , Hidrogênio/química , Eletrodos , Íons/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície , Temperatura
16.
J Biomed Mater Res B Appl Biomater ; 106(3): 1209-1217, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28570023

RESUMO

Development of bioactive glass and ceramic scaffolds intended for the reconstruction of large segmental bone defects remains a challenge for materials science due to the complexities involved in clinical implantation, bone-implant reaction, implant degradation and the multiple loading modes the implants subjected to. A comprehensive evaluation of the mechanical properties of inorganic scaffolds and exploration of new ways to toughen brittle constructs are critical prior to their successful application in loaded sites. A simple and widely adopted approach involves the coating of an inorganic scaffold with a polymeric material. In this work, a systematic evaluation of the influence of a biopolymer, polycaprolactone (PCL), coating on the mechanical performance of bioactive glass scaffolds was carried out. Results from this work indicate that a biopolymer PCL coating was more effective in increasing the compressive strength and reliability of the glass scaffold under compression, but less effective in improving its flexural strength or fracture toughness. This is the first report that reveals the limited successfulness of a polymer coating in improving the toughness of strong scaffolds, suggesting that new and novel ways of toughening inorganic scaffolds should be future research directions for scaffolds applied in loaded sites. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1209-1217, 2018.


Assuntos
Biopolímeros/química , Materiais Revestidos Biocompatíveis/química , Vidro/química , Alicerces Teciduais/química , Algoritmos , Fenômenos Mecânicos , Poliésteres/química , Porosidade , Reprodutibilidade dos Testes
17.
Adv Mater ; 29(45)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28833681

RESUMO

Nature is very successful in designing strong and tough, lightweight materials. Examples include seashells, bone, teeth, fish scales, wood, bamboo, silk, and many others. A distinctive feature of all these materials is that their properties are far superior to those of their constituent phases. Many of these natural materials are lamellar or layered in nature. With its "brick and mortar" structure, nacre is an example of a layered material that exhibits extraordinary physical properties. Finding inspiration in living organisms to create bioinspired materials is the subject of intensive research. Several processing techniques have been proposed to design materials mimicking natural materials, such as layer-by-layer deposition, self-assembly, electrophoretic deposition, hydrogel casting, doctor blading, and many others. Freeze casting, also known as ice-templating, is a technique that has received considerable attention in recent years to produce bioinspired bulk materials. Here, recent advances in the freeze-casting technique are reviewed for fabricating lamellar scaffolds by assembling different dimensional building blocks, including nanoparticles, polymer chains, nanofibers, and nanosheets. These lamellar scaffolds are often infiltrated by a second phase, typically a soft polymer matrix, a hard ceramic matrix, or a metal matrix. The unique architecture of the resultant bioinspired structural materials displays excellent mechanical properties. The challenges of the current research in using the freeze-casting technique to create materials large enough to be useful are also discussed, and the technique's promise for fabricating high-performance nacre-inspired structural materials in the future is reviewed.

18.
ACS Appl Mater Interfaces ; 9(29): 24993-24998, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28685566

RESUMO

Nacre-inspired nanocomposites have attracted a great deal of attention in recent years because of their special mechanical properties and universality of the underlying principles of materials engineering. The ability to respond to external stimuli will augment the high toughness and high strength of artificial nacre-like composites and open new technological horizons for these materials. Herein, we fabricated robust artificial nacre based on montmorillonite (MMT) that combines robustness with reversible thermochromism. Our artificial nacre shows great potential in various fields such as aerospace and sensors and opens an avenue to fabricate artificial nacre responsive to other external stimuli in the future.

19.
ACS Appl Mater Interfaces ; 9(29): 24987-24992, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28682591

RESUMO

Graphene composite films inspired by nacre are the subject of ongoing research efforts to optimize their properties for applications in flexible energy devices. Noncovalent interactions do not cause interruption of the delocalized conjugated π-electron system, thus preserving graphene's excellent properties. Herein, we synthesized a conjugated molecule with pyrene groups on both ends of a long linear chain (AP-DSS) from 1-aminopyrene (AP) and disuccinimidyl suberate (DSS). The AP-DSS molecules are used to cross-link adjacent graphene nanosheets via π-π interfacial interactions to improve properties of graphene films. The tensile strength and toughness of resultant graphene films were 4.1 and 6.4 times higher, respectively, than that of pure rGO film. More remarkably, the electrical conductivity showed a simultaneous improvement, which is rare to be achieved in other kinds of covalent or noncovalent functionalization. Such integration demonstrates the advantage of this work to previously reported noncovalent functionalization of graphene.

20.
Adv Healthc Mater ; 6(18)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28699281

RESUMO

Ideal bone scaffolds having good biocompatibility, good biodegradability, and beneficial mechanical properties are the basis for bone tissue engineering. Specifically, cell migration within 3D scaffolds is crucial for bone regeneration of critical size defects. In this research, hydroxyapatite scaffolds with three different types of architectures (tortuous, parallel, and graded channels) are fabricated using the freeze-casting (ice-templating) method. While most studies promote cell migration by chemical factors, it can be greatly enhanced by introducing only graded channels as compared with tortuous or parallel channels. The results provide insights and guidance in designing novel scaffolds to enhance cell migration behavior for bone tissue regeneration.


Assuntos
Materiais Biocompatíveis/farmacologia , Movimento Celular/efeitos dos fármacos , Durapatita/farmacologia , Animais , Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Células Cultivadas , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Engenharia Tecidual/métodos , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...