Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38846932

RESUMO

Using dendron chemistry, we developed stability enhanced, carboxylate surface modified (negatively charged dendron) AuNPs (Au-NCD). Since the carboxylate surface of Au-NCD is optimal for complexation with cisplatin (Pt) moieties, we further synthesized Pt loaded Au-NCD (Au-NCD/Pt) to serve as potential therapeutic anticancer agents. The size distribution, zeta potential and surface plasmon resonance of both Au-NCDs and Au-NCD/Pt were characterized via dynamic light scattering, scanning transmission electron microscopy and ultraviolet-visible spectrophotometry. Surface chemistry, Pt uptake, and Pt release were evaluated using inductively coupled plasma-mass spectrometry and X-ray photoelectron spectroscopy. Colloidal stability in physiological media over a wide pH range (1 to 13) and shelf-life stability (up to 6 months) were also assessed. Finally, the cytotoxicity of both Au-NCD and Au-NCD/Pt to Chinese hamster ovary cells (CHO K1; as a normal cell line) and to human lung epithelial cells (A549; as a cancer cell line) were evaluated. The results of these physicochemical and functional cytotoxicity studies with Au-NCD/Pt demonstrated that the particles exhibited superlative colloidal stability, cisplatin uptake and in vitro anticancer activity despite low amounts of Pt release from the conjugate.

2.
Nanotoxicology ; 17(1): 94-115, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36919473

RESUMO

Despite the great potential of using positively charged gold nanoparticles (AuNPs) in nanomedicine, no systematic studies have been reported on their synthesis optimization or colloidal stability under physiological conditions until a group at the National Institute of Standards and Technology recently succeeded in producing remarkably stable polyethyleneimine (PEI)-coated AuNPs (Au-PEI). This improved version of Au-PEI (Au-PEI25kB) has increased the demand for toxicity and teratogenicity information for applications in nanomedicine and nanotoxicology. In vitro assays for Au-PEI25kB in various cell lines showed substantial active cytotoxicity. For advanced toxicity research, the frog embryo teratogenesis assay-Xenopus (FETAX) method was employed in this study. We observed that positively-charged Au-PEI25kB exhibited significant toxicity and teratogenicity, whereas polyethylene glycol conjugated AuNPs (Au-PEG) used as comparable negative controls did not. There is a characteristic avidity of Au-PEI25kB for the jelly coat, the chorionic envelope (also known as vitelline membrane) and the cytoplasmic membrane, as well as a barrier effect of the chorionic envelope observed with Au-PEG. To circumvent these characteristics, an injection-mediated FETAX approach was utilized. Like treatment with the FETAX method, the injection of Au-PEI25kB severely impaired embryo development. Notably, the survival/concentration curve that was steep when the standard FETAX approach was employed became gradual in the injection-mediated FETAX. These results suggest that Au-PEI25kB may be a good candidate as a nanoscale positive control material for nanoparticle analysis in toxicology and teratology.


Assuntos
Nanopartículas Metálicas , Teratogênese , Animais , Ouro/toxicidade , Polietilenoimina/toxicidade , Polietilenoglicóis/toxicidade , Xenopus laevis , Nanopartículas Metálicas/toxicidade , Embrião não Mamífero , Teratogênicos/toxicidade , Mamíferos
3.
J Nucleic Acids ; 2022: 9188636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36164440

RESUMO

Application of DNA damage diagnostic tests is rapidly growing, in particular for ovarian, prostate, and skin cancers; environmental monitoring; chronic and degenerative diseases; and male infertility. Such tests suffer from significant variability among different laboratories due the lack of standardization, experimental validation, and differences in data interpretation. Reference methods and materials for quantitative measurement of UVA-induced DNA damage in mammalian cells are frequently needed. In this study, we examined the use of the single-cell gel electrophoresis (comet) assay to assess the UVA-induced DNA damage in surface-attached Chinese hamster ovary (CHO) cells treated with a photosensitizer as a candidate cellular oxidative damage reference material. We found that the comet images became diffused and the viability of the cells decreased substantially (>20%) as the UVA dose and benzo [a] pyrene (BaP) concentration exceeded 6.3 J/cm2 and 10-6 mol/L BaP. Maintaining the conditions of exposure within this range can improve DNA damage measurement fidelity, particularly if used as a quantitative reference method and to produce materials considered as an in vitro standard for the comet assay.

4.
J Nucleic Acids ; 2020: 8810105, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802493

RESUMO

To evaluate methods for analysis of genotoxic effects on mammalian cell lines, we tested the effect of three common genotoxic agents on Chinese hamster ovary (CHO) cells by single-cell gel electrophoresis (comet assay) and gas chromatography-tandem mass spectrometry (GC-MS/MS). Suspension-grown CHO cells were separately incubated with etoposide, bleomycin, and ethyl methanesulfonate and analyzed by an alkaline comet assay and GC-MS/MS. Although DNA strand breaks were detected by the comet assay after treatment with all three agents, GC-MS/MS could only detect DNA nucleobase lesions oxidatively induced by bleomycin. This demonstrates that although GC-MS/MS has limitations in detection of genotoxic effects, it can be used for selected chemical genotoxins that contribute to oxidizing processes. The comet assay, used in combination with GC-MS/MS, can be a more useful approach to screen a wide range of chemical genotoxins as well as to monitor other DNA-damaging factors.

5.
J Nucleic Acids ; 2020: 2928104, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411438

RESUMO

Reference materials are needed to quantify the level of DNA damage in cells, to assess sources of measurement variability and to compare results from different laboratories. The comet assay (single cell gel electrophoresis) is a widely used method to determine DNA damage in the form of strand breaks. Here we examine the use of electrochemical oxidation to produce DNA damage in cultured mammalian cells and quantify its percentage using the comet assay. Chinese hamster ovary (CHO) cells were grown on an indium tin oxide electrode surface and exposed 12 h to electrochemical potentials ranging from 0.5 V to 1.5 V (vs Ag/AgCl). The resulting cells were harvested and analyzed by comet and a cell viability assay. We observed a linear increase in the percentage (DNA in tail) of strand breaks along with a loss of cell viability with increasing oxidation potential value. The results indicate that electrochemically induced DNA damage can be produced in mammalian cells under well-controlled conditions and could be considered in making a cellular reference material for the comet assay.

6.
DNA Repair (Amst) ; 75: 48-59, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30743082

RESUMO

Poly(ADP ribose) polymerase 1 (PARP1) is a multifunctional DNA repair protein of the base excision repair pathway and plays a major role in the repair of DNA strand breaks and in replication and transcriptional regulation among other functions. Mounting evidence points to the predictive and prognostic value of PARP1 expression in human cancers. Thus, PARP1 has become an important target in cancer therapy, leading to the development of inhibitors as anticancer drugs. In the past, PARP1 expression levels in tissue samples have generally been estimated by indirect and semi-quantitative immunohistochemical methods. Accurate measurement of PARP1 in normal tissues and malignant tumors of patients will be essential for evaluating PARP1 as a predictive and prognostic biomarker in cancer and other diseases, and for the development and use of its inhibitors in cancer therapy. In this work, we present an approach involving liquid chromatography-isotope-dilution tandem mass spectrometry to positively identify and accurately quantify PARP1 in human tissues and cultured cells. We identified and quantified PARP1 in human normal ovarian tissues and malignant ovarian tumors, and in three pairs of human cell lines, each pair consisting of a normal cell line and its cancerous counterpart. Significantly greater expression of PARP1 was observed in malignant ovarian tissues than in normal ovarian tissues. In the case of one pair of cell lines, the cancerous cell line also exhibited greater expression of PARP1 than in normal cell line. We also show the simultaneous measurement of PARP1 and apurinic/apyrimidinic endonuclease 1 (APE1) in a given protein extract. The approach presented in this work is expected to contribute to the accurate quantitative assessment of PARP1 levels in basic research and clinical studies.


Assuntos
Cromatografia Líquida , Poli(ADP-Ribose) Polimerase-1/metabolismo , Espectrometria de Massas em Tandem , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Feminino , Humanos , Células MCF-7 , Ovário/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-29755164

RESUMO

Surface plasmon resonance microscopy (SPRM) is a powerful label-free imaging technique with spatial resolution approaching the optical diffraction limit. The high sensitivity of SPRM to small changes in index of refraction at an interface allows imaging of dynamic protein structures within a cell. Visualization of subcellular features, such as focal adhesions (FAs), can be performed on live cells using a high numerical aperture objective lens with a digital light projector to precisely position the incident angle of the excitation light. Within the cell-substrate region of the SPRM image, punctate regions of high contrast are putatively identified as the cellular FAs. Optical parameter analysis is achieved by application of the Fresnel model to the SPRM data and resulting refractive index measurements are used to calculate protein density and mass. FAs are known to be regions of high protein density that reside at the cell-substratum interface. Comparing SPRM with fluorescence images of antibody stained for vinculin, a component in FAs, reveals similar measurements of FA size. In addition, a positive correlation between FA size and protein density is revealed by SPRM. Comparing SPRM images for two cell types reveals a distinct difference in the protein density and mass of their respective FAs. Application of SPRM to quantify mass can greatly aid monitoring basic processes that control FA mass and growth and contribute to accurate models that describe cell-extracellular interactions.

8.
DNA Repair (Amst) ; 33: 101-10, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26202347

RESUMO

MTH1 protein sanitizes the nucleotide pool so that oxidized 2'-deoxynucleoside triphosphates (dNTPs) cannot be used in DNA replication. Cancer cells require MTH1 to avoid incorporation of oxidized dNTPs into DNA that results in mutations and cell death. Inhibition of MTH1 eradicates cancer, validating MTH1 as an anticancer target. By overexpressing MTH1, cancer cells may mediate cancer growth and resist therapy. To date, there is unreliable evidence suggesting that MTH1 is increased in cancer cells, and available methods to measure MTH1 levels are indirect and semi-quantitative. Accurate measurement of MTH1 in disease-free tissues and malignant tumors of patients may be essential for determining if the protein is truly upregulated in cancers, and for the development and use of MTH1 inhibitors in cancer therapy. Here, we present a novel approach involving liquid chromatography-isotope-dilution tandem mass spectrometry to positively identify and accurately quantify MTH1 in human tissues. We produced full length (15)N-labeled MTH1 and used it as an internal standard for the measurements. Following trypsin digestion, seven tryptic peptides of both MTH1 and (15)N-MTH1 were identified by their full scan and product ion spectra. These peptides provided a statistically significant protein score that would unequivocally identify MTH1. Next, we identified and quantified MTH1 in human disease-free breast tissues and malignant breast tumors, and in four human cultured cell lines, three of which were cancer cells. Extreme expression of MTH1 in malignant breast tumors was observed, suggesting that cancer cells are addicted to MTH1 for their survival. The approach described is expected to be applicable to the measurement of MTH1 levels in malignant tumors vs. surrounding disease-free tissues in cancer patients. This attribute may help develop novel treatment strategies and MTH1 inhibitors as potential drugs, and guide therapies.


Assuntos
Neoplasias da Mama/metabolismo , Cromatografia Líquida/métodos , Enzimas Reparadoras do DNA/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Linhagem Celular Tumoral , Enzimas Reparadoras do DNA/química , Feminino , Humanos , Hidrólise , Dados de Sequência Molecular , Isótopos de Nitrogênio , Peptídeos/metabolismo , Monoéster Fosfórico Hidrolases/química , Tripsina/metabolismo
9.
BMC Cell Biol ; 15: 35, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25441447

RESUMO

BACKGROUND: Surface plasmon resonance imaging (SPRI) is a label-free technique that can image refractive index changes at an interface. We have previously used SPRI to study the dynamics of cell-substratum interactions. However, characterization of spatial resolution in 3 dimensions is necessary to quantitatively interpret SPR images. Spatial resolution is complicated by the asymmetric propagation length of surface plasmons in the x and y dimensions leading to image degradation in one direction. Inferring the distance of intracellular organelles and other subcellular features from the interface by SPRI is complicated by uncertainties regarding the detection of the evanescent wave decay into cells. This study provides an experimental basis for characterizing the resolution of an SPR imaging system in the lateral and distal dimensions and demonstrates a novel approach for resolving sub-micrometer cellular structures by SPRI. The SPRI resolution here is distinct in its ability to visualize subcellular structures that are in proximity to a surface, which is comparable with that of total internal reflection fluorescence (TIRF) microscopy but has the advantage of no fluorescent labels. RESULTS: An SPR imaging system was designed that uses a high numerical aperture objective lens to image cells and a digital light projector to pattern the angle of the incident excitation on the sample. Cellular components such as focal adhesions, nucleus, and cellular secretions are visualized. The point spread function of polymeric nanoparticle beads indicates near-diffraction limited spatial resolution. To characterize the z-axis response, we used micrometer scale polymeric beads with a refractive index similar to cells as reference materials to determine the detection limit of the SPR field as a function of distance from the substrate. Multi-wavelength measurements of these microspheres show that it is possible to tailor the effective depth of penetration of the evanescent wave into the cellular environment. CONCLUSION: We describe how the use of patterned incident light provides SPRI at high spatial resolution, and we characterize a finite limit of detection for penetration depth. We demonstrate the application of a novel technique that allows unprecedented subcellular detail for SPRI, and enables a quantitative interpretation of SPRI for subcellular imaging.


Assuntos
Microscopia de Fluorescência/instrumentação , Microscopia de Contraste de Fase/instrumentação , Análise de Célula Única/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Animais , Linhagem Celular , Desenho de Equipamento , Humanos , Microscopia de Fluorescência/métodos , Microscopia de Contraste de Fase/métodos , Análise de Célula Única/métodos , Ressonância de Plasmônio de Superfície/métodos
10.
PLoS One ; 8(7): e69894, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922845

RESUMO

Unless repaired, DNA damage can drive mutagenesis or cell death. DNA repair proteins may therefore be used as biomarkers in disease etiology or therapeutic response prediction. Thus, the accurate determination of DNA repair protein expression and genotype is of fundamental importance. Among DNA repair proteins involved in base excision repair, apurinic/apyrimidinic endonuclease 1 (APE1) is the major endonuclease in mammals and plays important roles in transcriptional regulation and modulating stress responses. Here, we present a novel approach involving LC-MS/MS with isotope-dilution to positively identify and accurately quantify APE1 in human cells and mouse tissue. A completely (15)N-labeled full-length human APE1 was produced and used as an internal standard. Fourteen tryptic peptides of both human APE1 (hAPE1) and (15)N-labeled hAPE1 were identified following trypsin digestion. These peptides matched the theoretical peptides expected from trypsin digestion and provided a statistically significant protein score that would unequivocally identify hAPE1. Using the developed methodology, APE1 was positively identified and quantified in nuclear and cytoplasmic extracts of multiple human cell lines and mouse liver using selected-reaction monitoring of typical mass transitions of the tryptic peptides. We also show that the methodology can be applied to the identification of hAPE1 variants found in the human population. The results describe a novel approach for the accurate measurement of wild-type and variant forms of hAPE1 in vivo, and ultimately for defining the role of this protein in disease development and treatment responses.


Assuntos
Cromatografia Líquida/métodos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Fígado/metabolismo , Espectrometria de Massas em Tandem/métodos , Animais , Reparo do DNA/fisiologia , Camundongos
11.
Lab Chip ; 12(23): 4972-5, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23079718

RESUMO

We have developed a system to isolate rare cells from whole blood using commercially available components and simple microfluidics. We characterized the capture of MCF-7 cells spiked into whole human blood using this system to demonstrate that enrichment and enumeration studies give results similar to in situ surface-modified devices while reducing fabrication and operation complexity.


Assuntos
Anticorpos/metabolismo , Separação Celular/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Células Neoplásicas Circulantes/metabolismo , Linhagem Celular Tumoral , Humanos
12.
Biotechnol Prog ; 28(4): 1069-78, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22619183

RESUMO

Descriptive terms are often used to characterize cells in culture, but the use of nonquantitative and poorly defined terms can lead to ambiguities when comparing data from different laboratories. Although recently there has been a good deal of interest in unambiguous identification of cell lines via their genetic markers, it is also critical to have definitive, quantitative metrics to describe cell phenotypic characteristics. Quantitative metrics of cell phenotype will aid the comparison of data from experiments performed at different times and in different laboratories where influences such as the age of the population and differences in culture conditions or protocols can potentially affect cellular metabolic state and gene expression in the absence of changes in the genetic profile. Here, we present examples of robust methodologies for quantitatively assessing characteristics of cell morphology and cell-cell interactions, and of growth rates of cells within the population. We performed these analyses with endothelial cell lines derived from dolphin, bovine and human, and with a mouse fibroblast cell line. These metrics quantify some characteristics of these cells lines that clearly distinguish them from one another, and provide quantitative information on phenotypic changes in one of the cell lines over large number of passages.


Assuntos
Técnicas Citológicas/métodos , Células Endoteliais/citologia , Fibroblastos/citologia , Microscopia de Fluorescência/métodos , Microscopia de Contraste de Fase/métodos , Animais , Bovinos , Linhagem Celular , Proliferação de Células , Tamanho Celular , Golfinhos , Células Endoteliais/química , Fibroblastos/química , Humanos , Cinética , Camundongos , Fenótipo
13.
Cytometry A ; 79(3): 192-202, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22045641

RESUMO

The extracellular matrix protein tenascin-C plays a critical role in development, wound healing, and cancer progression, but how it is controlled and how it exerts its physiological responses remain unclear. By quantifying the behavior of live cells with phase contrast and fluorescence microscopy, the dynamic regulation of TN-C promoter activity is examined. We employ an NIH 3T3 cell line stably transfected with the TN-C promoter ligated to the gene sequence for destabilized green fluorescent protein (GFP). Fully automated image analysis routines, validated by comparison with data derived from manual segmentation and tracking of single cells, are used to quantify changes in the cellular GFP in hundreds of individual cells throughout their cell cycle during live cell imaging experiments lasting 62 h. We find that individual cells vary substantially in their expression patterns over the cell cycle, but that on average TN-C promoter activity increases during the last 40% of the cell cycle. We also find that the increase in promoter activity is proportional to the activity earlier in the cell cycle. This work illustrates the application of live cell microscopy and automated image analysis of a promoter-driven GFP reporter cell line to identify subtle gene regulatory mechanisms that are difficult to uncover using population averaged measurements.


Assuntos
Ciclo Celular/genética , Processamento de Imagem Assistida por Computador/métodos , Regiões Promotoras Genéticas , Tenascina/genética , Animais , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Microscopia de Fluorescência , Microscopia de Contraste de Fase , Células NIH 3T3 , Tenascina/metabolismo
14.
Cytometry A ; 77(9): 895-903, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20629195

RESUMO

Spatially resolved details of the interactions of cells with a fibronectin modified surface were examined using surface plasmon resonance imaging (SPRI). SPRI is a label-free technique that is based on the spatial measurement of interfacial refractive index. SPRI is sensitive to short range interactions between cells and their substratum. The high contrast in SPR signal between cell edges and substratum facilitates identification of cell edges and segmentation of cell areas. With this novel technique, we demonstrate visualization of cell-substratum interactions, and how cell-substratum interactions change over time as cells spread, migrate, and undergo membrane ruffling.


Assuntos
Fenômenos Fisiológicos Celulares , Matriz Extracelular/fisiologia , Ressonância de Plasmônio de Superfície/métodos , Animais , Adesão Celular , Membrana Celular/fisiologia , Movimento Celular/fisiologia , Matriz Extracelular/química , Fibronectinas/química , Microscopia/instrumentação , Microscopia/métodos , Músculo Liso Vascular/química , Músculo Liso Vascular/citologia , Ratos , Refratometria/instrumentação , Refratometria/métodos , Ressonância de Plasmônio de Superfície/instrumentação
15.
J Nanobiotechnology ; 8: 13, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20550705

RESUMO

BACKGROUND: The rapid growth of the nanotechnology industry and the wide application of various nanomaterials have raised concerns over their impact on the environment and human health. Yet little is known about the mechanism of cellular uptake and cytotoxicity of nanoparticles. An array of nanomaterials has recently been introduced into cancer research promising for remarkable improvements in diagnosis and treatment of the disease. Among them, quantum dots (QDs) distinguish themselves in offering many intrinsic photophysical properties that are desirable for targeted imaging and drug delivery. RESULTS: We explored the kinetics and mechanism of cellular uptake of QDs with different surface coatings in two human mammary cells. Using fluorescence microscopy and laser scanning cytometry (LSC), we found that both MCF-7 and MCF-10A cells internalized large amount of QD655-COOH, but the percentage of endocytosing cells is slightly higher in MCF-7 cell line than in MCF-10A cell line. Live cell fluorescent imaging showed that QD cellular uptake increases with time over 40 h of incubation. Staining cells with dyes specific to various intracellular organelles indicated that QDs were localized in lysosomes. Transmission electron microscopy (TEM) images suggested a potential pathway for QD cellular uptake mechanism involving three major stages: endocytosis, sequestration in early endosomes, and translocation to later endosomes or lysosomes. No cytotoxicity was observed in cells incubated with 0.8 nM of QDs for a period of 72 h. CONCLUSIONS: The findings presented here provide information on the mechanism of QD endocytosis that could be exploited to reduce non-specific targeting, thereby improving specific targeting of QDs in cancer diagnosis and treatment applications. These findings are also important in understanding the cytotoxicity of nanomaterials and in emphasizing the importance of strict environmental control of nanoparticles.

16.
Anal Chem ; 81(22): 9239-46, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19860390

RESUMO

Oxygen tension in mammalian cell culture can profoundly affect cellular differentiation, viability, and proliferation. However, precise measurement of dissolved oxygen in real time remains difficult. We report a new noninvasive sensor that can accurately measure oxygen concentration during cell culture while being compatible with live-cell imaging techniques such as fluorescence and phase contrast microscopy. The sensor is prepared by integrating the porphyrin dye, Pt(II) meso-tetrakis(pentafluorophenyl)porphine (PtTFPP) into polydimethylsiloxane (PDMS) thin films. Response of the sensor in the presence of oxygen can be characterized by the linear Stern-Volmer relationship with high sensitivity (K(SV) = 584 +/- 71 atm(-1)). A multilayer sensor design, created by sandwiching the PtTFPP-PDMS with a layer of Teflon AF followed by a second PDMS layer, effectively mitigates against dye cytotoxicity while providing a substrate for cell attachment. Using this sensor, changes in oxygen tension could be monitored in real-time as attached cells proliferated. The oxygen tension was found to decrease due to oxygen consumption by the cells, and the data could be analyzed using Fick's law to obtain the per-cell oxygen consumption rate. This sensor is likely to enable new studies on the effects of dissolved oxygen on cellular behavior.


Assuntos
Técnicas de Cultura de Células/métodos , Dimetilpolisiloxanos/química , Oxigênio/análise , Porfirinas/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Células NIH 3T3
17.
Biomaterials ; 30(29): 5486-96, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19640581

RESUMO

The enzyme tissue transglutaminase 2 (TG2) appears to play an important role in several physiological processes such as wound healing, the progression of cancer and of vascular disease. Additionally, TG2 has been proposed as a means of stabilizing collagen extracellular matrix (ECM) scaffolds for tissue engineering applications. In this report, we examined the effect of TG2 treatment on the mechanical properties of the ECM, and associated cell responses. Using a model ECM of fibrillar collagen, we quantitatively examined vascular smooth muscle cell (vSMC) response to untreated, or TG2 treated collagen. We show that cells respond to TG2 treated collagen with increased spreading, an increase in contractile response as indicated by elevated F-actin polymerization and myosin light chain phosphorylation, and increased proliferation, without apparent changes in integrin specificity or matrix topography. Comparative atomic force microscopy loading studies indicate that TG2 treated fibrils are 3 times more resistant to shearing force from an AFM tip than untreated fibrils. The data suggest that TG2 treatment of collagen increases matrix mechanical stiffness, which apparently alters the contractile and proliferative response of vSMC.


Assuntos
Células Endoteliais/fisiologia , Colágenos Fibrilares/química , Contração Muscular/fisiologia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/fisiologia , Transdução de Sinais/fisiologia , Transglutaminases/administração & dosagem , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Proteínas de Ligação ao GTP , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Proteína 2 Glutamina gama-Glutamiltransferase , Ratos , Transdução de Sinais/efeitos dos fármacos , Engenharia Tecidual/métodos , Transglutaminases/química
18.
Assay Drug Dev Technol ; 7(4): 356-65, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19530892

RESUMO

Cell-based assays for measuring ribosome inhibition by proteins such as the plant toxin ricin are important for characterizing decontamination strategies and developing detection technologies for field use. We report here an assay for ricin that provides a response that is relevant to the mechanism of ricin activity and permits a much faster readout than the commonly used assays for cytotoxicity. The assay relies on the response of an engineered reporter cell line that was produced by stably transfecting Vero cells to express green fluorescent protein (GFP) under the control ofa cytomegalovirus (CMV) promoter. The results of the GFP-based assay were compared with the assay results from three commercially available cytotoxicity assays. The GFP assay reports a sensitive response to ricin after 6 h of treatment while the other assays require a 24-h incubation. Unlike the other assays, monitoring cellular GFP on a per-cell basis allows detection of reduced ribosome activity before significant cell death occurs, and the results are not convoluted by the numbers of cells being assayed.


Assuntos
Citotoxinas/toxicidade , Proteínas de Fluorescência Verde/química , Animais , Bioensaio/métodos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Chlorocebus aethiops , Corantes , Citometria de Fluxo , Proteínas de Fluorescência Verde/análise , Citometria por Imagem , Processamento de Imagem Assistida por Computador , Ribossomos/efeitos dos fármacos , Ricina/toxicidade , Espectrometria de Fluorescência , Sais de Tetrazólio , Tiazóis , Transfecção , Células Vero
19.
Clin Chem ; 55(7): 1307-15, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19443566

RESUMO

BACKGROUND: Human epidermal growth factor receptor 2 (HER2) is an important biomarker whose status plays a pivotal role in therapeutic decision-making for breast cancer patients and in determining their clinical outcomes. Ensuring the accuracy and reproducibility of HER2 assays by immunohistochemistry (IHC) and by fluorescence in situ hybridization (FISH) requires a reliable standard for monitoring assay sensitivity and specificity, and for assessing methodologic variation. A prior NIST workshop addressed this need by reaching a consensus to create cell lines as reference materials for HER2 testing. METHODS: Breast carcinoma cell lines SK-BR-3 and MCF-7 were characterized quantitatively by IHC with chicken anti-HER2 IgY antibody and by FISH with biotinylated bacterial artificial chromosome DNA probes; both assays used quantum dots as detectors. Formalin-fixed and paraffin-embedded (FFPE) cell blocks were prepared and tested for suitability as candidate reference materials by IHC and FISH with commercially available reagents. IHC and FISH results were also compared with those obtained by laser-scanning cytometry and real-time PCR, respectively. RESULTS: MCF-7 cells had typical numbers of gene copies and very low production of HER2 protein, whereas SK-BR-3 cells contained approximately 10-fold more copies of the gene and exhibited approximately 15-fold higher amounts of HER2 protein than MCF-7 cells. FFPE SK-BR-3 cells showed results similar to those for fresh SK-BR-3 cells. CONCLUSIONS: SK-BR-3 and MCF-7 are suitable as candidate reference materials in QC of HER2 testing. Coupled with the associated assay platforms, they provide valuable controls for quantitative measurement of HER2 amplification and production in breast cancer samples, irrespective of the antibody/probe or detector used.


Assuntos
Neoplasias da Mama/genética , Amplificação de Genes , Genes erbB-2 , Controle de Qualidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente
20.
BMC Cell Biol ; 10: 16, 2009 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-19245706

RESUMO

BACKGROUND: A critical challenge in cell biology is quantifying the interactions of cells with their extracellular matrix (ECM) environment and the active remodeling by cells of their ECM. Fluorescence microscopy is a commonly employed technique for examining cell-matrix interactions. A label-free imaging method would provide an alternative that would eliminate the requirement of transfected cells and modified biological molecules, and if collected nondestructively, would allow long term observation and analysis of live cells. RESULTS: Using surface plasmon resonance imaging (SPRI), the deposition of protein by vascular smooth muscle cells (vSMC) cultured on fibronectin was quantified as a function of cell density and distance from the cell periphery. We observed that as much as 120 ng/cm2 of protein was deposited by cells in 24 h. CONCLUSION: SPRI is a real-time, low-light-level, label-free imaging technique that allows the simultaneous observation and quantification of protein layers and cellular features. This technique is compatible with live cells such that it is possible to monitor cellular modifications to the extracellular matrix in real-time.


Assuntos
Matriz Extracelular/ultraestrutura , Fibronectinas/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Animais , Linhagem Celular , Células/ultraestrutura , Cicloeximida/farmacologia , Fibronectinas/ultraestrutura , Microscopia de Fluorescência , Microscopia de Contraste de Fase , Ratos , Ressonância de Plasmônio de Superfície/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...