Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Horiz ; 8(11): 3055-3062, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34635900

RESUMO

Bilayer spin crossover (SCO)@polymer nanocomposites show robust and controllable actuation cycles upon an electrical stimulus. The anisotropic shape of the embedded particles as well as the mechanical coupling between the SCO particles and the matrix can substantially intensify the work output of the actuators.

2.
Nanotechnology ; 28(2): 025502, 2017 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-27905315

RESUMO

During cyclic actuation, conducting polymer based artificial muscles are often creeping from the initial movement range. One of the likely reasons of such behaviour is unbalanced charging during conducting polymer oxidation and reduction. To improve the actuation reversibility and subsequently the long time performance of ionic actuators, we suggest using spray-coated carbon nanotube (CNT) carpets on the surface of the conducting polymer electrodes. We show that carbon nanotubes facilitate a conducting polymer redox reaction and improve its reversibility. Consequently, in the long term, charge accumulation in the polymer film is avoided leading to a significantly improved lifetime performance during cycling actuation. To our knowledge, it is the first time a simple solution to an actuator creeping problem has been suggested.

3.
ACS Appl Mater Interfaces ; 7(36): 19966-77, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26289948

RESUMO

The exploitation of soft conducting polymer-based actuators suffers from two main shortcomings: their short life cycle and the reproducibility of the fabrication techniques. The short life cycle usually results from the delamination of the components due to stresses at the interface during the actuation. In this work, to achieve strong adhesion to poly(3,4- ethylenedioxythiophene) poly(styrenesulfonate) ( PEDOT: PSS) electrodes, the wetting properties of the surface of a polyvinylidene fluoride (PVDF) membrane are improved using argon-plasma-induced surface polymerization of poly(ethylene glycol) monomethyl ether methacrylate (PEGMA). Hybrid membranes are created with hydrophilic PVDF-graft-PEGMA outer surfaces and hydrophobic bulk. The width of each layer is controlled by spray coating, as it allows for the deposition of the reaction precursor to a certain depth. Subsequently, a PEDOT: PSS water solution fills the pores of the functionalized part of the membrane and a mixing layer between PEDOT: PSS and PVDF is created. We also show that PVDF-graft-PEGMA copolymers play an important role in binding the membrane to the electrodes and that direct mechanical interlocking in the pores can further improve the adhesion. Finally, PEDOT: PSS/PVDF-graft-PEGMA/PEDOT:PSS actuators are made by simple solution casting. They are capable of producing high strains of 0.6% and show no signs of delamination after more than 150 h or 10(4) actuation cycles. Furthermore, the preservation of the hydrophobic membrane in between two PEDOT: PSS layers increases the resistance between them from 0.36 Ω to 0.16 MΩ, thus drastically modifying the power dissipation of the actuators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...