Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 267(35): 25174-80, 1992 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-1460017

RESUMO

The catalytic subunit of cAMP-dependent protein kinase contains two stable phosphorylation sites, Thr-197 and Ser-338 (Shoji, S., Titani, K., Demaille, J. G., and Fischer, E. H. (1979) J. Biol. Chem. 254, 6211-6214). Thr-197 is very resistant to dephosphorylation and thus cannot typically be autophosphorylated in vitro once the stable subunit is formed. Ser-338 is slowly dephosphorylated and can be rephosphorylated autocatalytically. In addition to these two stable phosphorylation sites, a new site of autophosphorylation, Ser-10, was identified. Phosphorylation at Ser-10 does not have a major effect on activity, and phosphates from Ser-10 or Ser-338 are not transferred to physiological substrates such as the type II regulatory subunit. Autophosphorylation at Ser-10 is associated with one of the two major isoelectric variants of the catalytic subunit. The form having the more acidic pI can be autophosphorylated at Ser-10 while the more basic form of the catalytic subunit cannot. Phosphorylation at Ser-10 does not account for the two isoenzyme forms. Since the reason for two isoelectric variants of the catalytic subunit is still unknown, it is not possible to provide a structural basis for the difference in accessibility of Ser-10 to phosphorylation. Either Ser-10 is not accessible in the more basic form of the catalytic subunit or some other type of post- or cotranslational modification causes Ser-10 to be a poor substrate. Whether the myristoyl group at the amino-terminal Gly is important for Ser-10 autophosphorylation remains to be established. The isoenzyme forms of the catalytic subunit do not correspond to the gene products coded for by the C alpha and C beta genes.


Assuntos
Miocárdio/enzimologia , Proteínas Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Histonas/metabolismo , Cinética , Substâncias Macromoleculares , Dados de Sequência Molecular , Oligopeptídeos/metabolismo , Fragmentos de Peptídeos/isolamento & purificação , Fosforilação , Proteínas Quinases/isolamento & purificação , Processamento de Proteína Pós-Traducional , Serina , Suínos , Treonina , Tripsina
3.
FASEB J ; 2(11): 2677-85, 1988 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-3294077

RESUMO

Protein kinases represent a diverse family of enzymes that play critical roles in regulation. The simplest and best-understood biochemically is the catalytic (C) subunit of cAMP-dependent protein kinase, which can serve as a framework for the entire family. The amino-terminal portion of the C subunit constitutes a nucleotide binding site based on affinity labeling, labeling of lysines, and a conserved triad of glycines. The region beyond this nucleotide fold also contains essential residues. Modification of Asp 184 with a hydrophobic carbodiimide leads to inactivation, and this residue may function as a general base in catalysis. Despite the diversity of the kinase family, all share a homologous catalytic core, and the residues essential for nucleotide binding or catalysis in the C subunit are invariant in every protein kinase. Affinity labeling and intersubunit cross-linking have localized a portion of the peptide binding site, and this region is variable in the kinase family. The crystal structure of the C subunit also is being solved. The C subunit is maintained in its inactive state by forming a holoenzyme complex with an inhibitory regulatory (R) subunit. This R subunit has a well-defined domain structure that includes two tandem cAMP binding domains at the carboxy-terminus, each of which is homologous to the catabolite gene activator protein in Escherichia coli. Affinity labeling with 8N3 cAMP has identified residues that are in close proximity to the cAMP binding sites and is consistent with models of the cAMP binding sites based on the coordinates of the CAP crystal structure. An expression vector was constructed for the RI subunit and several mutations have been introduced. These mutations address 1) the major site of photoaffinity labeling, 2) a conserved arginine in the cAMP binding site, and 3) the consequences of deleting the entire second cAMP binding domain.


Assuntos
Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Animais , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica
4.
Biochemistry ; 26(23): 7371-8, 1987 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-3501317

RESUMO

The hydrophobic carbodiimide dicyclohexylcarbodiimide (DCCD) has been shown to inhibit the catalytic (C) subunit of adenosine cyclic 3',5'-phosphate dependent protein kinase (EC 2.7.1.3) in a time-dependent, irreversible manner. The rate of inactivation was first order and showed saturation kinetics with an apparent Ki of 60 microM. Magnesium adenosine 5'-triphosphate (MgATP) was capable of protecting against this inhibition, whereas neither a synthetic peptide substrate nor histone afforded protection. Mg alone afforded some protection. When the catalytic subunit was aggregated with the regulatory subunit in the holoenzyme complex, no inhibition was observed. The inhibition was enhanced at low pH, suggesting that a carboxylic acid group was the target for interaction with DCCD. On the basis of the protection studies, it is most likely that this carboxylic acid group is associated with the MgATP binding site, perhaps serving as a ligand for the metal. Efforts to identify the site that was modified by DCCD included (1) modification with [14C]DCCD, (2) modification by DCCD in the presence of [3H]aniline, and (3) modification with DCCD and [14C]glycine ethyl ester. In no case was radioactivity incorporated into the protein, suggesting that the irreversible inhibition was due to an intramolecular cross-link between a reactive carboxylic acid group and a nearby amino group. Differential peptide mapping identified a single peptide that was consistently lost as a consequence of DCCD inhibition. This peptide (residues 166-189) contained four carboxylic acid residues as well as an internal Lys.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Carbodi-Imidas/farmacologia , Dicicloexilcarbodi-Imida/farmacologia , Inibidores de Proteínas Quinases , Trifosfato de Adenosina/farmacologia , Animais , Cinética , Substâncias Macromoleculares , Magnésio/farmacologia , Miocárdio/enzimologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...