Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 11: 34, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21324151

RESUMO

BACKGROUND: High Salinity is a major environmental stress influencing growth and development of rice. Comparative proteomic analysis of hybrid rice shoot proteins from Shanyou 10 seedlings, a salt-tolerant hybrid variety, and Liangyoupeijiu seedlings, a salt-sensitive hybrid variety, was performed to identify new components involved in salt-stress signaling. RESULTS: Phenotypic analysis of one protein that was upregulated during salt-induced stress, cyclophilin 2 (OsCYP2), indicated that OsCYP2 transgenic rice seedlings had better tolerance to salt stress than did wild-type seedlings. Interestingly, wild-type seedlings exhibited a marked reduction in maximal photochemical efficiency under salt stress, whereas no such change was observed for OsCYP2-transgenic seedlings. OsCYP2-transgenic seedlings had lower levels of lipid peroxidation products and higher activities of antioxidant enzymes than wild-type seedlings. Spatiotemporal expression analysis of OsCYP2 showed that it could be induced by salt stress in both Shanyou 10 and Liangyoupeijiu seedlings, but Shanyou 10 seedlings showed higher OsCYP2 expression levels. Moreover, circadian rhythm expression of OsCYP2 in Shanyou 10 seedlings occurred earlier than in Liangyoupeijiu seedlings. Treatment with PEG, heat, or ABA induced OsCYP2 expression in Shanyou 10 seedlings but inhibited its expression in Liangyoupeijiu seedlings. Cold stress inhibited OsCYP2 expression in Shanyou 10 and Liangyoupeijiu seedlings. In addition, OsCYP2 was strongly expressed in shoots but rarely in roots in two rice hybrid varieties. CONCLUSIONS: Together, these data suggest that OsCYP2 may act as a key regulator that controls ROS level by modulating activities of antioxidant enzymes at translation level. OsCYP2 expression is not only induced by salt stress, but also regulated by circadian rhythm. Moreover, OsCYP2 is also likely to act as a key component that is involved in signal pathways of other types of stresses-PEG, heat, cold, or ABA.


Assuntos
Ciclofilinas/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Tolerantes a Sal/metabolismo , Cloreto de Sódio/farmacologia , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Peroxidação de Lipídeos , Dados de Sequência Molecular , Oryza/efeitos dos fármacos , Estresse Oxidativo , Fenótipo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/metabolismo , Proteoma , Espécies Reativas de Oxigênio/metabolismo , Salinidade , Plantas Tolerantes a Sal/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/metabolismo , Estresse Fisiológico
2.
Yi Chuan ; 28(12): 1633-48, 2006 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-17138554

RESUMO

Proteome techniques have widely been applied to the fields of plant genetics, plant development, and plant physiology and ecology to investigate plant genetic diversity, plant development such as seed maturation and germination processes, differentiation of plant tissue and organ, separation and functional identification of novel component of various organells, mechanisms of plant adapted to abiotic or biotic stresses including high temperature, low temperature, high salt, drought, and pathogens and insects, and interaction of plant with microbe. The prospects of plant proteomics are discussed.


Assuntos
Biologia , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Desenvolvimento Vegetal , Plantas/genética , Plantas/microbiologia , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...