Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Behav Neurosci ; 14: 81, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523519

RESUMO

Chronic stress can impact decision-making and lead to a preference for immediate rewards rather than long-term payoffs. Factors that may influence these effects of chronic stress on decision-making are under-explored. Here we used a mouse model to investigate the changes in decision-making caused by the experience of chronic stress and the role of social isolation in exaggerating these changes. To test decision-making, mice were trained to perform a Cost-Benefit Conflict (CBC) task on a T-maze, in which they could choose between a high-reward, high-risk alternative and a low-reward, low-risk alternative. Mice were either housed in groups or alone throughout the experiment. Both groups of mice underwent a seven-day period of repeated immobilization to induce chronic stress. Stress levels were confirmed using behavioral (open field test) and physiological (urine corticosterone ELISA) measures. We found a significant increase in frequency of high-risk decisions after exposure to chronic stress among both socially- and individually-housed mice. Crucially, socially-housed mice showed a significantly smaller increase in high-risk decision-making compared to singly-housed mice. These findings suggest that chronic stress leads to an increase in high-risk decision-making in mice, and that lack of social interaction may exacerbate this stress effect.

3.
J Vis Exp ; (159)2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32538900

RESUMO

Robust and simple behavioral paradigms of appetitive, associative memory are crucial for researchers interested in cellular and molecular mechanisms of memory. In this paper, an effective and low-cost mouse behavioral protocol is described for examining the effects of physiological manipulation (such as the infusion of pharmacological agents) on the learning rate and duration of odor-reward memory. Representative results are provided from a study examining the differential role of tyrosine kinase receptor activity in short-term (STM) and long-term memory (LTM). Male mice were conditioned to associate a reward (sugar pellet) with one of the two odors, and their memory for the association was tested 2 or 48 h later. Immediately prior to the training, a tyrosine kinase (Trk) receptor inhibitor or vehicle infusions were delivered into the olfactory bulb (OB). Although there was no effect of the infusion on the learning rate, blockade of the Trk receptors in the OB selectively impaired LTM (48 h), and not short-term memory (STM; 2 h). The LTM impairment was attributed to the diminished odor selectivity as measured by the length of the digging time. The culmination of the results of this experiment showed that Trk receptor activation in the OB is the key in olfactory memory consolidation.


Assuntos
Aprendizagem , Memória de Curto Prazo , Odorantes , Recompensa , Animais , Masculino , Memória de Curto Prazo/fisiologia , Camundongos , Bulbo Olfatório , Olfato/fisiologia
4.
Learn Mem ; 25(5): 198-205, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29661832

RESUMO

Long-term fear memory formation in the hippocampus and neocortex depends upon brain-derived neurotrophic factor (BDNF) signaling after acquisition. Incremental, appetitive odor discrimination learning is thought to depend substantially on the differentiation of adult-born neurons within the olfactory bulb (OB)-a process that is closely associated with BDNF signaling. We sought to elucidate the role of neurotrophin signaling within the OB on odor memory consolidation. Male mice were trained on odor-reward associative discriminations after bilateral infusion of the kinase inhibitor K252a, or vehicle control, into the OB. K252a is a partially selective inhibitor of tyrosine kinase (Trk) receptors, including the TrkB receptor for BDNF, though it also inhibits other plasticity-related kinases such as PKC and CaMKII/IV. K252a infusion into the OB did not impair odor acquisition or short-term (2 h) memory for the learned discriminations, but significantly impaired long-term (48 h) odor memory (LTM). This LTM deficit also was associated with reduced selectivity for the conditioned odorant in a reward-seeking digging task. Infusions of K252a immediately prior to testing did not impair LTM recall. These results indicate that kinase activation in the OB is required for the consolidation of odor memory of incrementally acquired information.


Assuntos
Consolidação da Memória/fisiologia , Memória de Longo Prazo/fisiologia , Bulbo Olfatório/enzimologia , Receptores Proteína Tirosina Quinases/fisiologia , Olfato/fisiologia , Animais , Carbazóis/administração & dosagem , Discriminação Psicológica , Inibidores Enzimáticos/administração & dosagem , Alcaloides Indólicos/administração & dosagem , Masculino , Consolidação da Memória/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Camundongos , Odorantes , Percepção Olfatória/fisiologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores
5.
Front Behav Neurosci ; 8: 238, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25071492

RESUMO

Memories are dynamic physical phenomena with psychometric forms as well as characteristic timescales. Most of our understanding of the cellular mechanisms underlying the neurophysiology of memory, however, derives from one-trial learning paradigms that, while powerful, do not fully embody the gradual, representational, and statistical aspects of cumulative learning. The early olfactory system-particularly olfactory bulb-comprises a reasonably well-understood and experimentally accessible neuronal network with intrinsic plasticity that underlies both one-trial (adult aversive, neonatal) and cumulative (adult appetitive) odor learning. These olfactory circuits employ many of the same molecular and structural mechanisms of memory as, for example, hippocampal circuits following inhibitory avoidance conditioning, but the temporal sequences of post-conditioning molecular events are likely to differ owing to the need to incorporate new information from ongoing learning events into the evolving memory trace. Moreover, the shapes of acquired odor representations, and their gradual transformation over the course of cumulative learning, also can be directly measured, adding an additional representational dimension to the traditional metrics of memory strength and persistence. In this review, we describe some established molecular and structural mechanisms of memory with a focus on the timecourses of post-conditioning molecular processes. We describe the properties of odor learning intrinsic to the olfactory bulb and review the utility of the olfactory system of adult rodents as a memory system in which to study the cellular mechanisms of cumulative learning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...