Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Discov ; 10(1): 43, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622126

RESUMO

Macroautophagy is a process that cells engulf cytosolic materials by autophagosomes and deliver them to lysosomes for degradation. The biogenesis of autophagosomes requires ATG2 as a lipid transfer protein to transport lipids from existing membranes to phagophores. It is generally believed that endoplasmic reticulum is the main source for lipid supply of the forming autophagosomes; whether ATG2 can transfer lipids from other organelles to phagophores remains elusive. In this study, we identified a new ATG2A-binding protein, ANKFY1. Depletion of this endosome-localized protein led to the impaired autophagosome growth and the reduced autophagy flux, which largely phenocopied ATG2A/B depletion. A pool of ANKFY1 co-localized with ATG2A between endosomes and phagophores and depletion of UVRAG, ANKFY1 or ATG2A/B led to reduction of PI3P distribution on phagophores. Purified recombinant ANKFY1 bound to PI3P on membrane through its FYVE domain and enhanced ATG2A-mediated lipid transfer between PI3P-containing liposomes. Therefore, we propose that ANKFY1 recruits ATG2A to PI3P-enriched endosomes and promotes ATG2A-mediated lipid transfer from endosomes to phagophores. This finding implicates a new lipid source for ATG2A-mediated phagophore expansion, where endosomes donate PI3P and other lipids to phagophores via lipid transfer.

2.
Cell Rep ; 43(2): 113760, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38340317

RESUMO

Autophagy is crucial for degrading and recycling cellular components. Fusion between autophagosomes and lysosomes is pivotal, directing autophagic cargo to degradation. This process is driven by STX17-SNAP29-VAMP8 and STX7-SNAP29-YKT6 in mammalian cells. However, the interaction between STX17 and YKT6 and its significance remain to be revealed. In this study, we challenge the notion that STX17 and YKT6 function independently in autophagosome-lysosome fusion. YKT6, through its SNARE domain, forms a complex with STX17 and SNAP29 on autophagosomes, enhancing autophagy flux. VAMP8 displaces YKT6 from this complex, leading to the formation of the fusogenic complex STX17-SNAP29-VAMP8. We demonstrated that the YKT6-SNAP29-STX17 complex facilitates both lipid and content mixing driven by STX17-SNAP29-VAMP8, suggesting a priming role of YKT6 for efficient membrane fusion. Our results provide a potential regulation mechanism of autophagosome-lysosome fusion, highlighting the importance of YKT6 and its interactions with STX17 and SNAP29 in promoting autophagy flux.


Assuntos
Autofagossomos , Fusão de Membrana , Animais , Humanos , Macroautofagia , Autofagia , Lisossomos , Mamíferos , Proteínas Qb-SNARE , Proteínas Qc-SNARE , Proteínas R-SNARE , Proteínas Qa-SNARE
3.
Nat Commun ; 14(1): 6360, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821429

RESUMO

The multi-subunit homotypic fusion and vacuole protein sorting (HOPS) membrane-tethering complex is required for autophagosome-lysosome fusion in mammals, yet reconstituting the mammalian HOPS complex remains a challenge. Here we propose a "hook-up" model for mammalian HOPS complex assembly, which requires two HOPS sub-complexes docking on membranes via membrane-associated Rabs. We identify Rab39A as a key small GTPase that recruits HOPS onto autophagic vesicles. Proper pairing with Rab2 and Rab39A enables HOPS complex assembly between proteoliposomes for its tethering function, facilitating efficient membrane fusion. GTP loading of Rab39A is important for the recruitment of HOPS to autophagic membranes. Activation of Rab39A is catalyzed by C9orf72, a guanine exchange factor associated with amyotrophic lateral sclerosis and familial frontotemporal dementia. Constitutive activation of Rab39A can rescue autophagy defects caused by C9orf72 depletion. These results therefore reveal a crucial role for the C9orf72-Rab39A-HOPS axis in autophagosome-lysosome fusion.


Assuntos
Fusão de Membrana , Animais , Autofagia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Catálise , Guanosina Trifosfato/metabolismo , Mamíferos/metabolismo , Fusão de Membrana/fisiologia , Vacúolos/metabolismo
4.
Protein Cell ; 12(7): 520-544, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33151516

RESUMO

Autophagy is essential for the maintenance of cellular homeostasis and its dysfunction has been linked to various diseases. Autophagy is a membrane driven process and tightly regulated by membrane-associated proteins. Here, we summarized membrane lipid composition, and membrane-associated proteins relevant to autophagy from a spatiotemporal perspective. In particular, we focused on three important membrane remodeling processes in autophagy, lipid transfer for phagophore elongation, membrane scission for phagophore closure, and autophagosome-lysosome membrane fusion. We discussed the significance of the discoveries in this field and possible avenues to follow for future studies. Finally, we summarized the membrane-associated biochemical techniques and assays used to study membrane properties, with a discussion of their applications in autophagy.


Assuntos
Autofagossomos/metabolismo , Autofagia/genética , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Lipídeos de Membrana/química , Proteínas de Membrana/metabolismo , Animais , Autofagossomos/ultraestrutura , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Transporte Biológico , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Expressão Gênica , Homeostase , Membranas Intracelulares/química , Membranas Intracelulares/ultraestrutura , Lisossomos/ultraestrutura , Mamíferos , Fusão de Membrana , Lipídeos de Membrana/classificação , Proteínas de Membrana/química , Proteínas de Membrana/classificação , Proteínas de Membrana/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...