Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38610291

RESUMO

Deep transfer learning has been widely used to improve the versatility of models. In the problem of cross-domain fault diagnosis in rolling bearings, most models require that the given data have a similar distribution, which limits the diagnostic effect and generalization of the model. This paper proposes a deep reconstruction transfer convolutional neural network (DRTCNN), which satisfies the domain adaptability of the model under cross-domain conditions. Firstly, the model uses a deep reconstruction convolutional automatic encoder for feature extraction and data reconstruction. Through sharing parameters and unsupervised training, the structural information of target domain samples is effectively used to extract domain-invariant features. Secondly, a new subdomain alignment loss function is introduced to align the subdomain distribution of the source domain and the target domain, which can improve the classification accuracy by reducing the intra-class distance and increasing the inter-class distance. In addition, a label smoothing algorithm considering the credibility of the sample is introduced to train the model classifier to avoid the impact of wrong labels on the training process. Three datasets are used to verify the versatility of the model, and the results show that the model has a high accuracy and stability.

2.
Sensors (Basel) ; 22(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36015870

RESUMO

The transient pulses caused by local faults of rolling bearings are an important measurement information for fault diagnosis. However, extracting transient pulses from complex nonstationary vibration signals with a large amount of background noise is challenging, especially in the early stage. To improve the anti-noise ability and detect incipient faults, a novel signal de-noising method based on enhanced time-frequency manifold (ETFM) and kurtosis-wavelet dictionary is proposed. First, to mine the high-dimensional features, the C-C method and Cao's method are combined to determine the embedding dimension and delay time of phase space reconstruction. Second, the input parameters of the liner local tangent space arrangement (LLTSA) algorithm are determined by the grid search method based on Renyi entropy, and the dimension is reduced by manifold learning to obtain the ETFM with the highest time-frequency aggregation. Finally, a kurtosis-wavelet dictionary is constructed for selecting the best atom and eliminating the noise and reconstruct the defective signal. Actual simulations showed that the proposed method is more effective in noise suppression than traditional algorithms and that it can accurately reproduce the amplitude and phase information of the raw signal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...