Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharm Sin B ; 13(7): 3121-3136, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37521873

RESUMO

Cancer vaccines represent a promising immunotherapeutic treatment modality. The promotion of cross-presentation of extracellular tumor-associated antigens on the major histocompatibility complex (MHC) class I molecules and dendritic cell maturation at the appropriate time and place is crucial for cancer vaccines to prime cytolytic T cell response with reduced side effects. Current vaccination strategies, however, are not able to achieve the spatiotemporal control of antigen cross-presentation. Here, we report a liposomal vaccine loading the second near-infrared window (NIR-II, 1000-1700 nm) fluorophore BPBBT with an efficient photothermal conversion effect that offers an NIR-light-triggered endolysosomal escape under the imaging guidance. The NIR-II image-guided vaccination strategy specifically controls the cytosolic delivery of antigens for cross-presentation in the draining lymph nodes (DLNs). Moreover, the photothermally induced endolysosomal rupture initiates autophagy. We also find that the adjuvant simvastatin acts as an autophagy activator through inhibiting the PI3K/AKT/mTOR pathway. The light-induced autophagy in the DLNs together with simvastatin treatment cooperatively increase MHC class II expression by activating autophagy machinery for dendritic cell maturation. This study presents a paradigm of NIR-II image-guided light-triggered vaccination. The approach for remote control of antigen cross-presentation and autophagy represents a new strategy for vaccine development.

2.
J Control Release ; 356: 242-255, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36813039

RESUMO

Photodynamic therapy (PDT) has been widely used for the local treatment of a variety of cancer. To improve the therapeutic effect, delicate nanoparticles loading photosensitizers (PSs) have been designed to improve the accumulation of PSs in tumor. Different from the anti-cancer drugs for chemotherapy or immunotherapy, the delivery of PSs requires rapid tumor accumulation followed by quick elimination to reduce the potential risk of phototoxicity. However, owing to the nature of prolonged blood circulation of the nanoparticles, the conventional nanoparticulate delivery systems may decelerate the clearance of PSs. Here, we present a tumor-targeted delivery approach termed "IgG-hitchhiking" strategy through a self-assembled PSs nanostructure, according to the intrinsic binding between the photosensitizer pheophorbide A (PhA) and immunoglobulin (IgG). We utilize the intravital fluorescence microscopic imaging to uncover that the nanostructures (IgG:PhA NPs) increase the extravasation of PhA into tumor within the first hour post intravenous injection compared with free PhA, correlating with an improved efficacy of PDT. After ∼1 h post-injection, a quick decrease in the PhA amount in the tumor is observed, while the tumor IgG level is continuously increasing. The disparity of the tumor distribution between PhA and IgG allows the quick elimination of the PSs for minimized skin phototoxicity. Our results provide a direct evidence of the enhanced accumulation and elimination of the PSs in the tumor microenvironment through the "IgG-hitchhiking" approach. This strategy presents a promising tumor-targeted delivery approach for the PSs in lieu of the existing strategy for enhanced PDT with minimal toxicity in clinic.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes , Fotoquimioterapia/métodos , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Nanopartículas/química , Imunoglobulina G/uso terapêutico , Microambiente Tumoral
3.
Pharmaceutics ; 14(11)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36432703

RESUMO

Although the immune checkpoint blockade (ICB) has made a great success in cancer immunotherapy, the overall response rate to the ICB, such as anti-programmed death ligand 1 (PD-L1) therapy, remains only at 20-30%. One major reason is the low expression level of the immune checkpoint in a certain type of tumor cells and its insufficient activation of the host immune system. Herein, we reported a cyclic RGD (cRGD)-modified liposomal delivery system loading the anti-PD-L1 antibody and the photosensitizer pheophorbide A (Pa), allowing a targeting of the low PD-L1 expressing 4T1 mouse breast cancer cells through the recognition of an overexpression of αvß3 integrin on the tumor cells. The Pa-mediated photodynamic therapy (PDT) elevated the expression of PD-L1 on the tumor cells. PDT, in combination with the anti-PD-L1 therapy, promoted the activation and maturation of dendritic cells as well as the infiltration of cytotoxic T lymphocytes, resulting in the augmented antitumor immune response for the enhanced therapeutic effect. These results demonstrated the combined therapeutic effects of PDT and ICB on the tumor with low PD-L1 levels. Our study suggested that an increase in the PD-L1 expression in tumor cells by PDT would be a promising adjuvant treatment to overcome the ICB irresponsiveness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...