Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Heart J Digit Health ; 3(2): 284-295, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36713022

RESUMO

Aims: Underutilization of guideline-directed heart failure with reduced ejection fraction (HFrEF) medications contributes to poor outcomes. Methods and results: A pilot study to evaluate the safety and efficacy of a home-based remote monitoring system for HFrEF management was performed. The system included wearable armband monitors paired with the smartphone application. An HFrEF medication titration algorithm was used to adjust medication daily. The primary endpoint was HFrEF medication utilization at 120 days. Twenty patients (60.5 ± 8.2 years, men: 85%) with HFrEF were recruited. All received angiotensin-converting enzyme inhibitor (ACEI)/angiotensin receptor blocker (ARB)/angiotensin receptor-neprilysin inhibitor (ARNI) at recruitment; 45% received ≥50% maximal targeted dose (MTD) with % MTD of 44.4 ± 31.7%. At baseline, 90 and 70% received beta-adrenergic blocker and mineralocorticoid receptor antagonist (MRA), 35% received ≥50% MTD beta-adrenergic blocker with % MTD of 34.1 ± 29.6%, and 25% received ≥50% MTD MRA with % MTD of 25.0 ± 19.9%. At 120 days, 70% received ≥50% MTD ACEI/ARB/ARNI (P = 0.110) with % MTD increased to 64.4 ± 33.5% (P = 0.060). The proportion receiving ≥50% MTD ARNI increased from 15 to 55% (P = 0.089) with % MTD ARNI increased from 20.6 ± 30.9 to 53.1 ± 39.5% (P = 0.006*). More patients received ≥50% MTD MRA (65 vs. 25%, P = 0.011*) with % MTD MRA increased from 25.0 ± 19.9 to 46.2 ± 28.8% (P = 0.009*). Ninety-five per cent of patients had reduced NT-proBNP with the percentage reduction of 26.7 ± 19.7%. Conclusion: Heart failure with reduced ejection fraction medication escalation with remote monitoring appeared feasible.

2.
Sci Rep ; 11(1): 4388, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623096

RESUMO

Patients infected with SARS-CoV-2 may deteriorate rapidly and therefore continuous monitoring is necessary. We conducted an observational study involving patients with mild COVID-19 to explore the potentials of wearable biosensors and machine learning-based analysis of physiology parameters to detect clinical deterioration. Thirty-four patients (median age: 32 years; male: 52.9%) with mild COVID-19 from Queen Mary Hospital were recruited. The mean National Early Warning Score 2 (NEWS2) were 0.59 ± 0.7. 1231 manual measurement of physiology parameters were performed during hospital stay (median 15 days). Physiology parameters obtained from wearable biosensors correlated well with manual measurement including pulse rate (r = 0.96, p < 0.0001) and oxygen saturation (r = 0.87, p < 0.0001). A machine learning-derived index reflecting overall health status, Biovitals Index (BI), was generated by autonomous analysis of physiology parameters, symptoms, and other medical data. Daily BI was linearly associated with respiratory tract viral load (p < 0.0001) and NEWS2 (r = 0.75, p < 0.001). BI was superior to NEWS2 in predicting clinical worsening events (sensitivity 94.1% and specificity 88.9%) and prolonged hospitalization (sensitivity 66.7% and specificity 72.7%). Wearable biosensors coupled with machine learning-derived health index allowed automated detection of clinical deterioration.


Assuntos
Técnicas Biossensoriais/métodos , COVID-19 , Aprendizado de Máquina , Dispositivos Eletrônicos Vestíveis , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Observacionais como Assunto , Adulto Jovem
3.
BMJ Open ; 10(7): e038555, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699167

RESUMO

INTRODUCTION: There is an outbreak of COVID-19 worldwide. As there is no effective therapy or vaccine yet, rigorous implementation of traditional public health measures such as isolation and quarantine remains the most effective tool to control the outbreak. When an asymptomatic individual with COVID-19 exposure is being quarantined, it is necessary to perform temperature and symptom surveillance. As such surveillance is intermittent in nature and highly dependent on self-discipline, it has limited effectiveness. Advances in biosensor technologies made it possible to continuously monitor physiological parameters using wearable biosensors with a variety of form factors. OBJECTIVE: To explore the potential of using wearable biosensors to continuously monitor multidimensional physiological parameters for early detection of COVID-19 clinical progression. METHOD: This randomised controlled open-labelled trial will involve 200-1000 asymptomatic subjects with close COVID-19 contact under mandatory quarantine at designated facilities in Hong Kong. Subjects will be randomised to receive a remote monitoring strategy (intervention group) or standard strategy (control group) in a 1:1 ratio during the 14 day-quarantine period. In addition to fever and symptom surveillance in the control group, subjects in the intervention group will wear wearable biosensors on their arms to continuously monitor skin temperature, respiratory rate, blood pressure, pulse rate, blood oxygen saturation and daily activities. These physiological parameters will be transferred in real time to a smartphone application called Biovitals Sentinel. These data will then be processed using a cloud-based multivariate physiology analytics engine called Biovitals to detect subtle physiological changes. The results will be displayed on a web-based dashboard for clinicians' review. The primary outcome is the time to diagnosis of COVID-19. ETHICS AND DISSEMINATION: Ethical approval has been obtained from institutional review boards at the study sites. Results will be published in peer-reviewed journals.


Assuntos
Inteligência Artificial , Infecções por Coronavirus/diagnóstico , Aplicativos Móveis , Pneumonia Viral/diagnóstico , Quarentena , Smartphone , Dispositivos Eletrônicos Vestíveis , Betacoronavirus , Monitorização Transcutânea dos Gases Sanguíneos , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Computação em Nuvem , Infecções por Coronavirus/fisiopatologia , Diagnóstico Precoce , Frequência Cardíaca , Hong Kong , Humanos , Pandemias , Pneumonia Viral/fisiopatologia , Taxa Respiratória , SARS-CoV-2 , Temperatura Cutânea , Telemedicina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...