Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 24(10)2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096547

RESUMO

A detailed analysis of the dehydrogenation mechanism of LiBH4/xLiAlH4 (x = 0.5, 1, 2) composites was performed by thermogravimetry (TG), differential scanning calorimetry (DSC), mass spectral analysis (MS), powder X-ray diffraction (XRD) and scanning electronic microscopy (SEM), along with kinetic investigations using a Sievert-type apparatus. The results show that the dehydrogenation pathway of LiBH4/xLiAlH4 had a four-step character. The experimental dehydrogenation amount did not reach the theoretical expectations, because the products such as AlB2 and LiAl formed a passivation layer on the surface of Al and the dehydrogenation reactions associated with Al could not be sufficiently carried out. Kinetic investigations discovered a nonlinear relationship between the activation energy (Ea) of dehydrogenation reactions associated with Al and the ratio x, indicating that the Ea was determined both by the concentration of Al produced by the decomposition of LiAlH4 and the amount of free surface of it. Therefore, the amount of effective contact surface of Al is the rate-determining factor for the overall dehydrogenation of the LiBH4/xLiAlH4 composites.


Assuntos
Hidrogênio/química , Análise Espectral , Varredura Diferencial de Calorimetria , Cinética , Análise Espectral/métodos , Termogravimetria , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA