Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 25(45): 8156-8161, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37939227

RESUMO

A proline-squaraine ligand (Pro-SqEB) that demonstrates high levels of stereoselectivity in olefin cyclopropanations when anchored to a Rh2II scaffold is introduced. High yields and enantioselectivities were achieved in the cyclopropanation of alkenes with diazo compounds in the presence of Rh2(Pro-SqEB)4. Notably, the unique electronic and steric design of this catalyst enabled the use of polar solvents that are otherwise incompatible with most RhII complexes.

2.
Org Lett ; 19(10): 2482-2485, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28453284

RESUMO

A RhII-catalyzed formal [4 + 1]-cycloaddition approach toward spirooxindole cyclopentenones is described. The diastereoselective cyclopropanation of vinyl ketenes with diazooxindoles as C1 synthons initiated a relatively mild formal [1,3]-migration of an intermediate cyclopropyl ketene to provide spirooxindoles in good to excellent yields (36-99%).

3.
Cancer Res ; 77(11): 2844-2856, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28400476

RESUMO

The impact of altered amino acid metabolism on cancer progression is not fully understood. We hypothesized that a metabolic transcriptome shift during metastatic evolution is crucial for brain metastasis. Here, we report a powerful impact in this setting caused by epigenetic upregulation of glutamate decarboxylase 1 (GAD1), a regulator of the GABA neurotransmitter metabolic pathway. In cell-based culture and brain metastasis models, we found that downregulation of the DNA methyltransferase DNMT1 induced by the brain microenvironment-derived clusterin resulted in decreased GAD1 promoter methylation and subsequent upregulation of GAD1 expression in brain metastatic tumor cells. In a system to dynamically visualize cellular metabolic responses mediated by GAD1, we monitored the cytosolic NADH:NAD+ equilibrium in tumor cells. Reducing GAD1 in metastatic cells by primary glia cell coculture abolished the capacity of metastatic cells to utilize extracellular glutamine, leading to cytosolic accumulation of NADH and increased oxidative status. Similarly, genetic or pharmacologic disruption of the GABA metabolic pathway decreased the incidence of brain metastasis in vivo Taken together, our results show how epigenetic changes in GAD1 expression alter local glutamate metabolism in the brain metastatic microenvironment, contributing to a metabolic adaption that facilitates metastasis outgrowth in that setting. Cancer Res; 77(11); 2844-56. ©2017 AACR.


Assuntos
Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/secundário , Metilação de DNA , Glutamato Descarboxilase/metabolismo , Animais , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Biologia Computacional , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Transfecção , Microambiente Tumoral , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...