Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(23): 11927-11935, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38821491

RESUMO

Chitosan is a product of deacetylated chitin and a natural polymer that is attractive as a functional and biocompatible material in the pursuit of alternative materials to synthetic plastics for a sustainable society. Although hierarchical architectures, from precise molecular structures to nanofibers and twisted structures, have been clarified, the expansion of the anisotropic microstructures of chitosan into millimeter-scale materials is in the process of development. In this study, a chitosan network was reconstructed from an aqueous solution by using the meniscus splitting method to form a three-dimensionally ordered microstructure. A chitosan membrane deposited on the millimeter scale formed a useful anisotropically pH-responsive hydrogel. During the evaporation of the aqueous solution from a finite space, chitosan underwent ordered deposition by capillary force to form a membrane with oriented microstructures and microlayers. Unlike the cast films formed between solid-liquid and air-liquid interfaces, this membrane formed between two air-liquid interfaces. As a result, the membranes with ordered microstructures were capable of signifying directional swelling in aqueous environments and reversible/irreversible swelling-deswelling changes by controlling the pH range. We envision that the anisotropic pH response of the chitosan network can be utilized under physiological conditions as a next-generation material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...