Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Glia ; 69(5): 1079-1093, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33105065

RESUMO

The contribution of neuroglial interactions to the regulation of energy balance has gained increasing acceptance in recent years. In this context, endozepines, endogenous analogs of benzodiazepine derived from diazepam-binding inhibitor, are now emerging as major players. Produced by glial cells (astrocytes and tanycytes), endozepines have been known for two decades to exert potent anorexigenic effects by acting at the hypothalamic level. However, it is only recently that their modes of action, including the mechanisms by which they modulate energy metabolism, have begun to be elucidated. The data available today are abundant, significant, and sometimes contradictory, revealing a much more complex regulation than initially expected. Several mechanisms of action of endozepines seem to coexist at the central level, particularly in the hypothalamus. The brainstem has also recently emerged as a potential site of action for endozepines. In addition to their central anorexigenic effects, endozepines may also display peripheral effects promoting orexigenic actions, adding to their complexity and raising yet more questions. In this review, we attempt to provide an overview of our current knowledge in this rapidly evolving field and to pinpoint questions that remain unanswered.


Assuntos
Inibidor da Ligação a Diazepam , Neuroglia , Inibidor da Ligação a Diazepam/metabolismo , Metabolismo Energético , Hipotálamo/metabolismo , Neuroglia/metabolismo , Peptídeos
2.
Front Endocrinol (Lausanne) ; 11: 566026, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33250858

RESUMO

Octadecaneuropeptide (ODN) and its precursor diazepam-binding inhibitor (DBI) are peptides belonging to the family of endozepines. Endozepines are exclusively produced by astroglial cells in the central nervous system of mammals, and their release is regulated by stress signals and neuroactive compounds. There is now compelling evidence that the gliopeptide ODN protects cultured neurons and astrocytes from apoptotic cell death induced by various neurotoxic agents. In vivo, ODN causes a very strong neuroprotective action against neuronal degeneration in a mouse model of Parkinson's disease. The neuroprotective activity of ODN is based on its capacity to reduce inflammation, apoptosis, and oxidative stress. The protective effects of ODN are mediated through its metabotropic receptor. This receptor activates a transduction cascade of second messengers to stimulate protein kinase A (PKA), protein kinase C (PKC), and mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK) signaling pathways, which in turn inhibits the expression of proapoptotic factor Bax and the mitochondrial apoptotic pathway. In N2a cells, ODN also promotes survival and stimulates neurite outgrowth. During the ODN-induced neuronal differentiation process, numerous mitochondria and peroxisomes are identified in the neurites and an increase in the amount of cholesterol and fatty acids is observed. The antiapoptotic and neurotrophic properties of ODN, including its antioxidant, antiapoptotic, and pro-differentiating effects, suggest that this gliopeptide and some of its selective and stable derivatives may have therapeutic value for the treatment of some neurodegenerative diseases.


Assuntos
Citoproteção/efeitos dos fármacos , Inibidor da Ligação a Diazepam/administração & dosagem , Modelos Animais de Doenças , Doenças Neurodegenerativas/prevenção & controle , Neuropeptídeos/administração & dosagem , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Animais , Citoproteção/fisiologia , Humanos , Camundongos , Fatores de Crescimento Neural/administração & dosagem , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neuroproteção/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia
3.
Mol Neurobiol ; 57(8): 3307-3333, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32519243

RESUMO

Research on energy homeostasis has focused on neuronal signaling; however, the role of glial cells has remained little explored. Glial endozepines exert anorexigenic actions by mechanisms which remain poorly understood. In this context, the present study was designed to decipher the mechanisms underlying the anorexigenic action of endozepines and to investigate their potential curative effect on high-fat diet-induced obesity. We carried out a combination of physiological, pharmacological, and molecular analyses together to dissect the underlying mechanisms of endozepine-induced hypophagia. To evaluate the potential anti-obesity effect of endozepines, different model of obesity were used, i.e., ob/ob and diet-induced obese mice. We show that the intracerebral administration of endozepines enhances satiety by targeting anorexigenic brain circuitry and induces STAT3 phosphorylation, a hallmark of leptin signaling. Strikingly, endozepines are entirely ineffective at reducing food intake in the presence of a circulating leptin antagonist and in leptin-deficient mice (ob/ob) but potentiate the reduced food intake and weight loss induced by exogenous leptin administration in these animals. Endozepines reversed high fat diet-induced obesity by reducing food intake and restored leptin-induced STAT3 phosphorylation in the hypothalamus. Interestingly, we observed that glucose and insulin synergistically enhance tanycytic endozepine expression and release. Finally, endozepines, which induce ERK activation necessary for leptin transport into the brain in cultured tanycytes, require tanycytic leptin receptor expression to promote STAT3 phosphorylation in the hypothalamus. Our data identify endozepines as potential anti-obesity compounds in part through the modulation of the LepR-ERK-dependent tanycytic leptin shuttle.


Assuntos
Inibidor da Ligação a Diazepam/metabolismo , Dieta Hiperlipídica , Hipotálamo/metabolismo , Leptina/metabolismo , Neuroglia/metabolismo , Obesidade/metabolismo , Animais , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Leptina/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos
4.
Pharmacol Ther ; 208: 107386, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31283949

RESUMO

The existence of specific binding sites for benzodiazepines (BZs) in the brain has prompted the search for endogenous BZ receptor ligands designated by the generic term « endozepines ¼. This has led to the identification of an 86-amino acid polypeptide capable of displacing [3H]diazepam binding to brain membranes, thus called diazepam-binding inhibitor (DBI). It was subsequently found that the sequence of DBI is identical to that of a lipid carrier protein termed acyl-CoA-binding protein (ACBP). The primary structure of DBI/ACBP has been well preserved, suggesting that endozepines exert vital functions. The DBI/ACBP gene is expressed by astroglial cells in the central nervous system, and by various cell types in peripheral organs. Endoproteolytic cleavage of DBI/ACBP generates several bioactive peptides including a triakontatetraneuropeptide that acts as a selective ligand of peripheral BZ receptors/translocator protein, and an octadecaneuropeptide that activates a G protein-coupled receptor and behaves as an allosteric modulator of the GABAAR. Although DBI/ACBP is devoid of a signal peptide, endozepines are released by astrocytes in a regulated manner. Consistent with the diversity and wide distribution of BZ-binding sites, endozepines appear to exert a large array of biological functions and pharmacological effects. Thus, intracerebroventricular administration of DBI or derived peptides induces proconflict and anxiety-like behaviors, and reduces food intake. Reciprocally, the expression of DBI/ACBP mRNA is regulated by stress and metabolic signals. In vitro, endozepines stimulate astrocyte proliferation and protect neurons and astrocytes from apoptotic cell death. Endozepines also regulate neurosteroid biosynthesis and neuropeptide expression, and promote neurogenesis. In peripheral organs, endozepines activate steroid hormone production, stimulate acyl chain ceramide synthesis and trigger pro-inflammatory cytokine secretion. The expression of the DBI/ACBP gene is enhanced in addiction/withdrawal animal models, in patients with neurodegenerative disorders and in various types of tumors. We review herein the current knowledge concerning the various actions of endozepines and discuss the physiopathological implications of these regulatory gliopeptides.


Assuntos
Benzodiazepinas/metabolismo , Receptores de GABA-A/metabolismo , Animais , Inibidor da Ligação a Diazepam/metabolismo , Humanos
5.
Molecules ; 24(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514417

RESUMO

Neurodegenerative diseases are characterized by oxidative stress, mitochondrial damage, and death of neuronal cells. To counteract such damage and to favor neurogenesis, neurotrophic factors could be used as therapeutic agents. Octadecaneuropeptide (ODN), produced by astrocytes, is a potent neuroprotective agent. In N2a cells, we studied the ability of ODN to promote neuronal differentiation. This parameter was evaluated by phase contrast microscopy, staining with crystal violet, cresyl blue, and Sulforhodamine 101. The effect of ODN on cell viability and mitochondrial activity was determined with fluorescein diacetate and DiOC6(3), respectively. The impact of ODN on the topography of mitochondria and peroxisomes, two tightly connected organelles involved in nerve cell functions and lipid metabolism, was evaluated by transmission electron microscopy and fluorescence microscopy: detection of mitochondria with MitoTracker Red, and peroxisome with an antibody directed against the ABCD3 peroxisomal transporter. The profiles in fatty acids, cholesterol, and cholesterol precursors were determined by gas chromatography, in some cases coupled with mass spectrometry. Treatment of N2a cells with ODN (10-14 M, 48 h) induces neurite outgrowth. ODN-induced neuronal differentiation was associated with modification of topographical distribution of mitochondria and peroxisomes throughout the neurites and did not affect cell viability and mitochondrial activity. The inhibition of ODN-induced N2a differentiation with H89, U73122, chelerythrine and U0126 supports the activation of a PKA/PLC/PKC/MEK/ERK-dependent signaling pathway. Although there is no difference in fatty acid profile between control and ODN-treated cells, the level of cholesterol and some of its precursors (lanosterol, desmosterol, lathosterol) was increased in ODN-treated cells. The ability of ODN to induce neuronal differentiation without cytotoxicity reinforces the interest for this neuropeptide with neurotrophic properties to overcome nerve cell damage in major neurodegenerative diseases.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Inibidor da Ligação a Diazepam/farmacologia , Lipídeos/química , Mitocôndrias/metabolismo , Neuropeptídeos/farmacologia , Fragmentos de Peptídeos/farmacologia , Peroxissomos/metabolismo , Proteína Quinase C/metabolismo , Fosfolipases Tipo C/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Peroxissomos/efeitos dos fármacos , Peroxissomos/ultraestrutura , Rodaminas/química , Rodaminas/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
J Mol Neurosci ; 69(1): 1-16, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30343367

RESUMO

Oxidative stress, associated with various neurodegenerative diseases, promotes ROS generation, impairs cellular antioxidant defenses, and finally, triggers both neurons and astroglial cell death by apoptosis. Astrocytes specifically synthesize and release endozepines, a family of regulatory peptides, including the octadecaneuropeptide (ODN). We have previously reported that ODN acts as a potent neuroprotective agent that prevents 6-OHDA-induced apoptotic neuronal death. The purpose of the present study was to investigate the potential glioprotective effect of ODN on 6-OHDA-induced oxidative stress and cell death in cultured rat astrocytes. Incubation of astrocytes with graded concentrations of ODN (10-14 to 10-8 M) inhibited 6-OHDA-evoked cell death in a concentration- and time-dependent manner. In addition, ODN prevented the decrease of mitochondrial activity and caspase-3 activation induced by 6-OHDA. 6-OHDA-treated cells also exhibited enhanced levels of ROS associated with a generation of H2O2 and O2°-, and a reduction of both superoxide dismutase (SOD) and catalase (CAT) activities. Co-treatment of astrocytes with low concentrations of ODN dose-dependently blocked 6-OHDA-evoked production of ROS and inhibition of antioxidant enzyme activities. Concomitantly, ODN stimulated Mn-SOD, CAT, glutathione peroxidase-1, and sulfiredoxin-1 gene transcription and rescued 6-OHDA-associated reduced expression of endogenous antioxidant enzymes. Taken together, these data indicate that, in rat astrocytes, ODN exerts anti-apoptotic and anti-oxidative activities, and hence prevents 6-OHDA-induced oxidative assault and cell death. ODN is thus a potential candidate to delay neuronal damages in various pathological conditions involving oxidative neurodegeneration.


Assuntos
Antioxidantes/farmacologia , Apoptose , Astrócitos/efeitos dos fármacos , Inibidor da Ligação a Diazepam/farmacologia , Neuropeptídeos/farmacologia , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/farmacologia , Animais , Astrócitos/metabolismo , Caspase 3/metabolismo , Catalase/metabolismo , Células Cultivadas , Oxidopamina/toxicidade , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
7.
Curr Pharm Des ; 24(33): 3918-3925, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30417780

RESUMO

The term endozepines designates a family of astroglia-secreted proteins including the diazepambinding inhibitor (DBI) and its processing products, which have been originally isolated and characterized as endogenous ligands of benzodiazepine receptors. It is now clearly established that the octadecaneuropeptide ODN (DBI33-50), acting through the central-type benzodiazepine receptor or a metabotropic receptor, exerts important functions such as proconflict behavior, induction of anxiety, inhibition of pentobarbital-provoked sleep, decrease of water consumption and reduction of food intake. To mediate its effects, ODN regulates both glial cell and neuronal activities by acting on neurosteroid biosynthesis and/or neuropeptide expression. In addition, ODN stimulates astrocyte proliferation and protects both neurons and astrocytes from oxidative stress-induced cell death. The antiapoptotic effect of ODN on neural cells is mediated through activation of the ODN metabotropic receptor positively coupled to PKA, PKC and MAPK/ERK transduction pathways, which ultimately reduces the pro-apoptotic gene Bax and stimulates Bcl-2 expressions, and inhibits intracellular reactive oxygen species accumulation. The imbalance in favor of Bcl2 promotes mitochondria functions and blocks in turn caspases activation while at the same time, ODN also activates the endogenous antioxidant system i.e. glutathione biosynthesis, and expression and activities of antioxidant enzymes. In cultured astrocytes, DBI expression is up-regulated during moderate oxidative stress, and authentic ODN production is increased, suggesting that ODN may act as a paracrine factor protecting neighboring neurons. Taken together, the remarkable effect of ODN on the apoptotic cascade suggests that innovative ODN derivatives could potentially be useful for treatment of cerebral injuries involving oxidative stress and neurodegeneration.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Inibidor da Ligação a Diazepam/farmacologia , Neurônios/efeitos dos fármacos , Neuropeptídeos/farmacologia , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/farmacologia , Animais , Lesões Encefálicas/patologia , Humanos
9.
Cell Mol Life Sci ; 75(11): 2075-2091, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29264673

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of dopamine (DA) neurons through apoptotic, inflammatory and oxidative stress mechanisms. The octadecaneuropeptide (ODN) is a diazepam-binding inhibitor (DBI)-derived peptide, expressed by astrocytes, which protects neurons against oxidative cell damages and apoptosis in an in vitro model of PD. The present study reveals that a single intracerebroventricular injection of 10 ng ODN 1 h after the last administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) prevented the degeneration of DA neurons induced by the toxin in the substantia nigra pars compacta of mice, 7 days after treatment. ODN-mediated neuroprotection was associated with a reduction of the number of glial fibrillary acidic protein-positive reactive astrocytes and a strong inhibition of the expression of pro-inflammatory genes such as interleukins 1ß and 6, and tumor necrosis factor-α. Moreover, ODN blocked the inhibition of the anti-apoptotic gene Bcl-2, and the stimulation of the pro-apoptotic genes Bax and caspase-3, induced by MPTP in the substantia nigra pars compacta. ODN also decreased or even in some cases abolished MPTP-induced oxidative damages, overproduction of reactive oxygen species and accumulation of lipid oxidation products in DA neurons. Furthermore, DBI knockout mice appeared to be more vulnerable than wild-type animals to MPTP neurotoxicity. Taken together, these results show that the gliopeptide ODN exerts a potent neuroprotective effect against MPTP-induced degeneration of nigrostriatal DA neurons in mice, through mechanisms involving downregulation of neuroinflammatory, oxidative and apoptotic processes. ODN may, thus, reduce neuronal damages in PD and other cerebral injuries involving oxidative neurodegeneration.


Assuntos
Inibidor da Ligação a Diazepam/uso terapêutico , Neuropeptídeos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Fragmentos de Peptídeos/uso terapêutico , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Espécies Reativas de Oxigênio/metabolismo
10.
Mol Neurobiol ; 55(6): 4596-4611, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28698967

RESUMO

Astroglial cells are important actors in the defense of brain against oxidative stress injuries. Glial cells synthesize and release the octadecaneuropeptide ODN, a diazepam-binding inhibitor (DBI)-related peptide, which acts through its metabotropic receptor to protect neurons and astrocytes from oxidative stress-induced apoptosis. The purpose of the present study is to examine the contribution of the endogenous ODN in the protection of astrocytes and neurons from moderate oxidative stress. The administration of H2O2 (50 µM, 6 h) induced a moderate oxidative stress in cultured astrocytes, i.e., an increase in reactive oxygen species, malondialdehyde, and carbonyl group levels, but it had no effect on astrocyte death. Mass spectrometry and QPCR analysis revealed that 50 µM H2O2 increased ODN release and DBI mRNA levels. The inhibition of ODN release or pharmacological blockage of the effects of ODN revealed that in these conditions, 50 µM H2O2 induced the death of astrocytes. The transfection of astrocytes with DBI siRNA increased the vulnerability of cells to moderate stress. Finally, the addition of 1 nM ODN to culture media reversed cell death observed in DBI-deficient astrocytes. The treatment of neurons with media from 50 µM H2O2-stressed astrocytes significantly reduced the neuronal death induced by H2O2; this effect is greatly attenuated by the administration of an ODN metabotropic receptor antagonist. Overall, these results indicate that astrocytes produce authentic ODN, notably in a moderate oxidative stress situation, and this glio- and neuro-protective agent may form part of the brain defense mechanisms against oxidative stress injury.


Assuntos
Astrócitos/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Neuroproteção , Estresse Oxidativo , Fragmentos de Peptídeos/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/ultraestrutura , Catalase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Peróxido de Hidrogênio/metabolismo , Neurônios/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos Wistar , Superóxido Dismutase/metabolismo
11.
Front Neurosci ; 11: 308, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28611581

RESUMO

Endozepines are endogenous ligands for the benzodiazepine receptors and also target a still unidentified GPCR. The endozepine octadecaneuropeptide (ODN), an endoproteolytic processing product of the diazepam-binding inhibitor (DBI) was recently shown to be involved in food intake control as an anorexigenic factor through ODN-GPCR signaling and mobilization of the melanocortinergic signaling pathway. Within the hypothalamus, the DBI gene is mainly expressed by non-neuronal cells such as ependymocytes, tanycytes, and protoplasmic astrocytes, at levels depending on the nutritional status. Administration of ODN C-terminal octapeptide (OP) in the arcuate nucleus strongly reduces food intake. Up to now, the relevance of extrahypothalamic targets for endozepine signaling-mediated anorexia has been largely ignored. We focused our study on the dorsal vagal complex located in the caudal brainstem. This structure is strongly involved in the homeostatic control of food intake and comprises structural similarities with the hypothalamus. In particular, a circumventricular organ, the area postrema (AP) and a tanycyte-like cells forming barrier between the AP and the adjacent nucleus tractus solitarius (NTS) are present. We show here that DBI is highly expressed by ependymocytes lining the fourth ventricle, tanycytes-like cells, as well as by proteoplasmic astrocytes located in the vicinity of AP/NTS interface. ODN staining observed at the electron microscopic level reveals that ODN-expressing tanycyte-like cells and protoplasmic astrocytes are sometimes found in close apposition to neuronal elements such as dendritic profiles or axon terminals. Intracerebroventricular injection of ODN or OP in the fourth ventricle triggers c-Fos activation in the dorsal vagal complex and strongly reduces food intake. We also show that, similarly to leptin, ODN inhibits the swallowing reflex when microinjected into the swallowing pattern generator located in the NTS. In conclusion, we hypothesized that ODN expressing cells located at the AP/NTS interface could release ODN and modify excitability of NTS neurocircuitries involved in food intake control.

12.
Artigo em Inglês | MEDLINE | ID: mdl-28487672

RESUMO

The urotensinergic system was previously considered as being linked to numerous physiopathological states, including atherosclerosis, heart failure, hypertension, pre-eclampsia, diabetes, renal disease, as well as brain vascular lesions. Thus, it turns out that the actions of the urotensin II (UII)/G protein-coupled receptor UT system in animal models are currently not predictive enough in regard to their effects in human clinical trials and that UII analogs, established to target UT, were not as beneficial as expected in pathological situations. Thus, many questions remain regarding the overall signaling profiles of UT leading to complex involvement in cardiovascular and inflammatory responses as well as cancer. We address the potential UT chemotactic structural and functional definition under an evolutionary angle, by the existence of a common conserved structural feature among chemokine receptorsopioïdergic receptors and UT, i.e., a specific proline position in the transmembrane domain-2 TM2 (P2.58) likely responsible for a kink helical structure that would play a key role in chemokine functions. Even if the last decade was devoted to the elucidation of the cardiovascular control by the urotensinergic system, we also attempt here to discuss the role of UII on inflammation and migration, likely providing a peptide chemokine status for UII. Indeed, our recent work established that activation of UT by a gradient concentration of UII recruits Gαi/o and Gα13 couplings in a spatiotemporal way, controlling key signaling events leading to chemotaxis. We think that this new vision of the urotensinergic system should help considering UT as a chemotactic therapeutic target in pathological situations involving cell chemoattraction.

13.
Anesthesiology ; 127(2): 347-354, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28542000

RESUMO

BACKGROUND: We compared the effects of etomidate and ketamine on the hypothalamic-pituitary-adrenal axis during sepsis. METHODS: Mice (n = 5/group) were injected intraperitoneally with lipopolysaccharide (10 mg/kg) and 6 h later randomized to receive ketamine (100 mg/kg), etomidate (30 mg/kg), or saline. At two time points (12 and 48 h), messenger RNA levels of hypothalamic corticotropin-releasing hormone, pituitary proopiomelanocortin, and four adrenal enzymes (P450 side-chain cleavage, 3ß-hydroxysteroid deshydrogenase, 21-hydroxylase, and 11ß-hydroxylase) were measured by in situ hybridization (results are presented as optical density), and plasma levels of corticosterone and adrenocorticotropin hormones were measured by enzyme-linked immunosorbent assay (mean ± SD). RESULTS: At 12 h, lipopolysaccharide induced an overexpression of corticotropin-releasing hormone (32 ± 5 vs. 18 ± 6, P < 0.01), proopiomelanocortin (21 ± 3 vs. 8 ± 0.9, P < 0.0001), P450 side-chain cleavage (32 ± 4 vs. 23 ± 10, P < 0.05), 21-hydroxylase (17 ± 5 vs. 12 ± 2, P < 0.05), and 11ß-hydroxylase (11 ± 4 vs. 6 ± 0.5, P = 0.001), and an elevation of corticosterone (642 ± 165 vs. 98.3 ± 63 ng/ml, P < 0.0001). Etomidate and ketamine reduced P450 side-chain cleavage (19 ± 7 and 19 ± 3 vs. 32 ± 4, P < 0.01), 21-hydroxylase (8 ± 0.8 and 8 ± 1 vs. 17 ± 5, P < 0.001), 11ß-hydroxylase (4 ± 0.5 and 7 ± 1 vs. 11 ± 4, P < 0.001 and P < 0.05), and corticosterone (413 ± 189 and 260 ± 161 vs. 642 ± 165 ng/ml, P < 0.05 and P < 0.01). Ketamine also inhibited adrenocorticotropin hormone production (2.5 ± 3.6 vs. 36 ± 15 pg/ml, P < 0.05). At 48 h, all four adrenal enzymes were down-regulated by lipopolysaccharide administration with corticosterone levels similar to the control group. Ketamine and etomidate did not modify corticosterone plasma levels. CONCLUSIONS: Our endotoxemic model induces an initial activation of the hypothalamic-pituitary-adrenal axis, followed by a secondary inhibition of adrenal steroidogenesis processes. Ketamine and etomidate inhibit the enzyme expression and activity of the adrenal gland at the early stage.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Endotoxemia , Etomidato/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Ketamina/farmacologia , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Analgésicos/farmacologia , Animais , Corticosterona/sangue , Hormônio Liberador da Corticotropina/sangue , Hormônio Liberador da Corticotropina/efeitos dos fármacos , Modelos Animais de Doenças , Etomidato/sangue , Hipnóticos e Sedativos/farmacologia , Sistema Hipotálamo-Hipofisário/fisiopatologia , Ketamina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sistema Hipófise-Suprarrenal/fisiopatologia , Pró-Opiomelanocortina/sangue , Pró-Opiomelanocortina/efeitos dos fármacos , Esteroide 21-Hidroxilase/sangue , Esteroide 21-Hidroxilase/efeitos dos fármacos
14.
Artigo em Inglês | MEDLINE | ID: mdl-28443065

RESUMO

Oxidative stress plays a major role in triggering astroglial cell death in diverse neuropathological conditions such as ischemia and neurodegenerative diseases. Numerous studies indicate that hemoglobin (Hb) is expressed in both resting and reactive glia cells, but nothing is known regarding a possible role of Hb on astroglial cell survival. Thus, the purpose of the present study was to investigate the potential glioprotective effect of Hb on hydrogen peroxide (H2O2)-induced oxidative stress and apoptosis in cultured rat astrocytes. Our study demonstrates that administration of graded concentrations of Hb (10-12 to 10-6 M) to H2O2-treated astrocytes reduces cell death in a concentration-dependent manner. H2O2 treatment induces the accumulation of reactive oxygen species (ROS) and nitric oxide (NO), a drop of the mitochondrial membrane potential, and a stimulation of caspase-3/7 activity. Exposure of H2O2-treated cells to Hb was accompanied by marked attenuations of ROS and NO surproductions, mitochondrial membrane potential reduction, and caspase-3/7 activity increase. The protective action of Hb was blocked by the protein kinase A (PKA) inhibitor H89, the protein kinase C (PKC) inhibitor chelerythrine, and the mitogen-activated protein (MAP)-kinase kinase (MEK) inhibitor U0126. Taken together, these data demonstrate for the first time that Hb is a glioprotective factor that protects astrocytes from apoptosis induced by oxidative stress and suggest that Hb may confer neuroprotection in neurodegenerative diseases. The anti-apoptotic activity of Hb on astrocytes is mediated through the PKA, PKC, and MAPK transduction pathways and can be accounted for by inhibition of oxidative stress-induced mitochondrial dysfunctions and caspase activation.

15.
Front Pharmacol ; 8: 138, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28377717

RESUMO

Purpose: Cognitive impairment in cancer patients induced, at least in part, by treatment are frequently observed and likely have negative impacts on patient quality of life. Such cognitive dysfunctions can affect attention, executive functions, and memory and processing speed, can persist after treatment, and their exact causes remain unclear. The aim of this review was to create an inventory and analysis of clinical studies evaluating biological markers and risk factors for cognitive decline in cancer patients before, during, or after therapy. The ultimate objectives were to identify robust markers and to determine what further research is required to develop original biological markers to enable prevention or adapted treatment management of patients at risk. Method: This review was guided by the PRISMA statement and included a search strategy focused on three components: "cognition disorders," "predictive factors"/"biological markers," and "neoplasms," searched in PubMed since 2005, with exclusion criteria concerning brain tumors, brain therapy, and imaging or animal studies. Results: Twenty-three studies meeting the criteria were analyzed. Potential associations/correlations were identified between cognitive impairments and specific circulating factors, cerebral spinal fluid constituents, and genetic polymorphisms at baseline, during, and at the end of treatment in cancer populations. The most significant results were associations between cognitive dysfunctions and genetic polymorphisms, including APOE-4 and COMT-Val; increased plasma levels of the pro-inflammatory cytokine, IL-6; anemia; and hemoglobin levels during chemotherapy. Plasma levels of specific hormones of the hypothalamo-pituitary-adrenal axis are also modified by treatment. Discussion: It is recognized in the field of cancer cognition that cancer and comorbidities, as well as chemotherapy and hormone therapy, can cause persistent cognitive dysfunction. A number of biological circulating factors and genetic polymorphisms, can predispose to the development of cognitive disorders. However, many predictive factors remain unproven and discordant findings are frequently reported, warranting additional clinical and preclinical longitudinal cohort studies, with goals of better characterization of potential biomarkers and identification of patient populations at risk and/or particularly deleterious treatments. Research should focus on prevention and personalized cancer management, to improve the daily lives, autonomy, and return to work of patients.

16.
Autophagy ; 12(12): 2344-2362, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27715446

RESUMO

Chemotactic migration is a fundamental behavior of cells and its regulation is particularly relevant in physiological processes such as organogenesis and angiogenesis, as well as in pathological processes such as tumor metastasis. The majority of chemotactic stimuli activate cell surface receptors that belong to the G protein-coupled receptor (GPCR) superfamily. Although the autophagy machinery has been shown to play a role in cell migration, its mode of regulation by chemotactic GPCRs remains largely unexplored. We found that ligand-induced activation of 2 chemotactic GPCRs, the chemokine receptor CXCR4 and the urotensin 2 receptor UTS2R, triggers a marked reduction in the biogenesis of autophagosomes, in both HEK-293 and U87 glioblastoma cells. Chemotactic GPCRs exert their anti-autophagic effects through the activation of CAPNs, which prevent the formation of pre-autophagosomal vesicles from the plasma membrane. We further demonstrated that CXCR4- or UTS2R-induced inhibition of autophagy favors the formation of adhesion complexes to the extracellular matrix and is required for chemotactic migration. Altogether, our data reveal a new link between GPCR signaling and the autophagy machinery, and may help to envisage therapeutic strategies in pathological processes such as cancer cell invasion.


Assuntos
Autofagossomos/metabolismo , Quimiotaxia , Receptores CXCR4/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Autofagia , Proteína 5 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Calpaína/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Endocitose , Glioma/metabolismo , Glioma/patologia , Células HEK293 , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo
17.
J Neurochem ; 137(6): 913-30, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26991551

RESUMO

Astroglial cells possess an array of cellular defense mechanisms, including superoxide dismutase (SOD) and catalase antioxidant enzymes, to prevent damages caused by oxidative stress. Nevertheless, astroglial cell viability and functionality can be affected by significant oxidative stress. We have previously shown that pituitary adenylate cyclase-activating polypeptide (PACAP) is a potent glioprotective agent that prevents hydrogen peroxide (H2 O2 )-induced apoptosis in cultured astrocytes. The purpose of this study was to investigate the potential protective effect of PACAP against oxidative-generated alteration of astrocytic antioxidant systems. Incubation of cells with subnanomolar concentrations of PACAP inhibited H2 O2 -evoked reactive oxygen species accumulation, mitochondrial respiratory burst, and caspase-3 mRNA level increase. PACAP also stimulated SOD and catalase activities in a concentration-dependent manner, and counteracted the inhibitory effect of H2 O2 on the activity of these two antioxidant enzymes. The protective action of PACAP against H2 O2 -evoked inhibition of antioxidant systems in astrocytes was protein kinase A, PKC, and MAP-kinase dependent. In the presence of H2 O2 , the SOD blocker NaCN and the catalase inhibitor 3-aminotriazole, both suppressed the protective effects of PACAP on SOD and catalase activities, mitochondrial function, and cell survival. Taken together, these results indicate that the anti-apoptotic effect of PACAP on astroglial cells can account for the activation of endogenous antioxidant enzymes and reduction in respiration rate, thus preserving mitochondrial integrity and preventing caspase-3 expression provoked by oxidative stress. Considering its powerful anti-apoptotic and anti-oxidative properties, the PACAPergic signaling system should thus be considered for the development of new therapeutical approaches to cure various pathologies involving oxidative neurodegeneration. We propose the following cascade for the glioprotective action of Pituitary adenylate cyclase-activating polypeptide (PACAP) against H2 O2 -induced astrocyte damages and cell apoptosis in cultured rat astrocytes. PACAP, through activation of its receptor, PAC1-R, and the protein kinase A (PKA), protein kinase C (PKC), and MAP-kinases signaling pathways, prevents accumulation of ROS and inhibition of SOD and catalase activities. This allows the preservation of mitochondrial membrane integrity and the reduction in caspase-3 activation induced by H2 O2 . These data may lead to the development of new strategies for cerebral injury treatment. Cat, catalase; Cyt. C, cytochrome C; SOD, superoxide dismutase.


Assuntos
Antioxidantes/farmacologia , Astrócitos/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Oxidantes/toxicidade , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antioxidantes/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Catalase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , L-Lactato Desidrogenase/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Fatores de Tempo
18.
Elife ; 52016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26880548

RESUMO

Acyl-CoA binding domain-containing 7 (Acbd7) is a paralog gene of the diazepam-binding inhibitor/Acyl-CoA binding protein in which single nucleotide polymorphism has recently been associated with obesity in humans. In this report, we provide converging evidence indicating that a splice variant isoform of the Acbd7 mRNA is expressed and translated by some POMC and GABAergic-neurons in the hypothalamic arcuate nucleus (ARC). We have demonstrated that the ARC ACBD7 isoform was produced and processed into a bioactive peptide referred to as nonadecaneuropeptide (NDN) in response to catabolic signals. We have characterized NDN as a potent anorexigenic signal acting through an uncharacterized endozepine G protein-coupled receptor and subsequently via the melanocortin system. Our results suggest that ACBD7-producing neurons participate in the hypothalamic leptin signalling pathway. Taken together, these data suggest that ACBD7-producing neurons are involved in the hypothalamic control exerted on food intake and energy expenditure by the leptin-melanocortin pathway.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Proteínas de Transporte/metabolismo , Ingestão de Alimentos , Metabolismo Energético , Neurônios/metabolismo , Animais , Depressores do Apetite/metabolismo , Camundongos , Neuropeptídeos/metabolismo
19.
Shock ; 45(6): 653-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26796573

RESUMO

BACKGROUND: The mechanisms involved in septic anorexia are mainly related to the secretion of inflammatory cytokines. The term endozepines designates a family of neuropeptides, including the octadecaneuropeptide (ODN), originally isolated as endogenous ligands of benzodiazepine receptors. Previous data showed that ODN, produced and released by astrocytes, is a potent anorexigenic peptide. We have studied the effect of sepsis by means of a model of cecal ligation and puncture (CLP) on the hypothalamic expression of endozepines (DBI mRNA and protein levels), as well as on the level of neuropeptides controlling energy homeostasis mRNAs: pro-opiomelanocortin, neuropeptide Y, and corticotropin-releasing hormone. In addition, we have investigated the effects of two inflammatory cytokines, TNF-α and IL-1ß, on DBI mRNA levels in cultured rat astrocytes. METHODS: Studies were performed on Sprague-Dawley male rats and on cultures of rat cortical astrocytes. Sepsis was induced using the CLP method. Sham-operated control animals underwent the same procedure, but the cecum was neither ligated nor incised. RESULTS: Sepsis caused by CLP evoked an increase of DBI mRNA levels in ependymal cells bordering the third ventricle and in tanycytes of the median eminence. CLP-induced sepsis was also associated with stimulated ODN-like immunoreactivity (ODN-LI) in the hypothalamus. In addition, TNF-α, but not IL-1ß, induced a dose-dependent increase in DBI mRNA in cultured rat astrocytes. An increase in the mRNA encoding the precursor of the anorexigenic peptide α-melanocyte stimulating hormone, the pro-opiomelanocortin, and the corticotropin-releasing hormone was observed in the hypothalamus. CONCLUSION: These results suggest that during sepsis, hypothalamic mRNA encoding endozepines, anorexigenic peptide as well as stress hormone could play a role in the anorexia/cachexia associated with inflammation due to sepsis and we suggest that this hypothalamic mRNA expression could involve TNF-α.


Assuntos
Inibidor da Ligação a Diazepam/metabolismo , Receptores de GABA-A/metabolismo , Sepse/sangue , Sepse/diagnóstico , Animais , Anorexia/metabolismo , Hormônio Liberador da Corticotropina/sangue , Inibidor da Ligação a Diazepam/sangue , Modelos Animais de Doenças , Hipotálamo/metabolismo , Técnicas In Vitro , Inflamação/sangue , Inflamação/diagnóstico , Interleucina-18/sangue , Ligantes , Masculino , Neuropeptídeo Y/sangue , Neuropeptídeos/sangue , Fragmentos de Peptídeos/sangue , Pró-Opiomelanocortina/sangue , Ratos , Ratos Sprague-Dawley , Sepse/metabolismo , Fator de Necrose Tumoral alfa/sangue
20.
Peptides ; 71: 56-65, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26143507

RESUMO

Oxidative stress, associated with a variety of disorders including neurodegenerative diseases, is a major cause of cellular dysfunction and biomolecule damages which play a crucial role in neuronal apoptosis. Astrocytes specifically synthesize and release endozepines, a family of regulatory peptides, including the octadecaneuropeptide ODN. We have recently shown that ODN is a potent glioprotective agent that prevents hydrogen peroxide (H2O2)-induced oxidative stress and apoptosis. The purpose of the present study was to investigate the potential protective effect of ODN on oxidative-generated damage of biomolecules in cultured rat astrocytes. Incubation of cells with subnanomolar concentrations of ODN (0.1fM-0.1nM) inhibited H2O2-evoked reactive oxygen species accumulation and cell death in a concentration-dependent manner. Exposure of H2O2-treated cells to 0.1nM ODN inhibited superoxide anion generation and blocked oxidative damage of cell molecules caused by H2O2i.e. formation and accumulation of lipid oxidation products, malondialdehydes and conjugated dienes, and protein carbonyl compounds. Taken together, these data demonstrate for the first time that ODN prevents oxidative stress-induced alteration of cellular constituents. ODN is thus a potential candidate to reduce neuronal damage in various pathological conditions involving oxidative neurodegeneration.


Assuntos
Astrócitos/metabolismo , Inibidor da Ligação a Diazepam/farmacologia , Peróxido de Hidrogênio/farmacologia , Neuropeptídeos/farmacologia , Fragmentos de Peptídeos/farmacologia , Animais , Astrócitos/patologia , Células Cultivadas , Oxirredução/efeitos dos fármacos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...