Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Clin Med ; 11(14)2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35887911

RESUMO

Abdominal bioelectrical impedance analysis (aBIA) has been in use to measure visceral fat area (VFA) in adults. Accurately measuring visceral fat using aBIA in children is challenging. Forty-six school-aged Japanese children aged 6-17 years (25 boys and 21 girls) were included in this study. All were measured, and their VFA obtained using aBIA (VFA-aBIA) and abdominal computed tomography (CT) (VFA-CT) were compared. VFA-aBIA was corrected using the Passing-Bablok method (corrected VFA-aBIA). The relationships between corrected VFA-aBIA and obesity-related clinical factors were analyzed, including non-alcoholic fatty liver disease (NAFLD) and serum leptin and adiponectin levels. Boys had higher VFA-CT than girls (p = 0.042), although no significant differences were found in their waist circumference, waist-to-height ratio, and body mass index. The corrected VFA-aBIA using y = 9.600 + 0.3825x (boys) and y = 7.607 + 0.3661x (girls) correlated with VFA-CT in both boys and girls. The corrected VFA-aBIA in patients with NAFLD was higher than that in those without NAFLD. Serum leptin and adiponectin levels were positively and negatively correlated with corrected VFA-aBIA, respectively. In conclusion, corrected VFA-aBIA was clearly correlated with VFA-CT and was related to NAFLD and serum leptin and adiponectin levels in school-aged Japanese children.

2.
Pediatr Int ; 63(6): 664-670, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33020997

RESUMO

BACKGROUND: Recent studies demonstrated that low-density lipoprotein-tryglyceride (LDL-TG) may represent another marker of cardiovascular risks. We therefore measured LDL-TG including the low-density lipoprotein (LDL) subclass distribution and investigated the association between LDL-TG subclass profile and the clustering of metabolic syndrome (MetS) components and insulin resistance in Japanese children. METHODS: The study included 237 schoolchildren (boys 115, girls 122). Four subclasses of low-density lipoprotein-tryglyceride (large, medium, small, and very small) was quantified using high-performance liquid chromatography. Total LDL-TG and TG levels in LDL subclasses were evaluated among four MetS component groups; non-abdominal obesity, abdominal obesity, pre-MetS, and MetS. RESULTS: Total LDL-TG (P = 0.0003, P = 0.0175) and triglyceride levels in LDL subclasses were significantly different among four MetS component groups (large: P = 0.0002, P = 0.0084; medium: P = 0.0009, P = 0.0491; small: P =0.0025, P = 0.0509; very small: P = 0.0808, P = 0.0228; boys and girls, respectively). Total LDL-TG (r = 0.411, P < 0.0001, r = 0.378. P < 0.0001) and triglyceride levels in LDL subclasses correlated positively with the homeostasis model of assessment ratio (large: r = 0.396, P < 0.0001, r = 0.346, P < 0.0001; medium: r = 0.274, P = 0.0030, r = 0.228, P = 0.0115; small: r = 0.342, P = 0.0002, r = 0.292, P = 0.0011; very small: r = 0.385, P < 0.0001, r = 0.426, P < 0.0001, boys and girls, respectively). CONCLUSIONS: Subclass distribution of LDL-TG was significantly associated with the clustering of MetS components in both sexes, and insulin resistance is a significant determinant of LDL-TG in all LDL subclasses. Lipoprotein-tryglyceride subclass analysis, rather than LDL-C, may provide a precise evaluation for cardiovascular disease risks in children with MetS.


Assuntos
Síndrome Metabólica , Criança , Análise por Conglomerados , Feminino , Humanos , Japão/epidemiologia , Lipoproteínas , Lipoproteínas LDL , Masculino , Síndrome Metabólica/epidemiologia , Triglicerídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...