Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nature ; 502(7471): 346-9, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24132291

RESUMO

Super-luminous supernovae that radiate more than 10(44) ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1-4. Some evolve slowly, resembling models of 'pair-instability' supernovae. Such models involve stars with original masses 140-260 times that of the Sun that now have carbon-oxygen cores of 65-130 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron-positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of (56)Ni are synthesized; this isotope decays to (56)Fe via (56)Co, powering bright light curves. Such massive progenitors are expected to have formed from metal-poor gas in the early Universe. Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova. Here we report observations of two slow-to-fade super-luminous supernovae that show relatively fast rise times and blue colours, which are incompatible with pair-instability models. Their late-time light-curve and spectral similarities to supernova 2007bi call the nature of that event into question. Our early spectra closely resemble typical fast-declining super-luminous supernovae, which are not powered by radioactivity. Modelling our observations with 10-16 solar masses of magnetar-energized ejecta demonstrates the possibility of a common explosion mechanism. The lack of unambiguous nearby pair-instability events suggests that their local rate of occurrence is less than 6 × 10(-6) times that of the core-collapse rate.

3.
Philos Trans A Math Phys Eng Sci ; 371(1992): 20120269, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-23630375

RESUMO

The Pan-STARRS1 survey is collecting multi-epoch, multi-colour observations of the sky north of declination -30°, and has designated 70 deg(2) for nightly observations that are particularly useful for transient detection. A duplicate, Pan-STARRS2, is nearing completion that offers opportunities to improve the quality of transient search and observation, as well as simply increasing the number of detections. A new system, the Asteroid Terrestrial-impact Last Alert System (ATLAS), increases the search area to all-sky in return for diminished sensitivity, and highlights tension among optimization for static sky images, optimization for faint transients and optimization for an unbiased number of transients. ATLAS gives up sub-arcsecond images and full colour information to specialize in the third category, but should detect many more transients than the Pan-STARRS1 Medium Deep fields or the Palomar Transient Factory, with examples of transient classes that are considerably closer and brighter.

4.
Nature ; 485(7397): 217-20, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22575962

RESUMO

The flare of radiation from the tidal disruption and accretion of a star can be used as a marker for supermassive black holes that otherwise lie dormant and undetected in the centres of distant galaxies. Previous candidate flares have had declining light curves in good agreement with expectations, but with poor constraints on the time of disruption and the type of star disrupted, because the rising emission was not observed. Recently, two 'relativistic' candidate tidal disruption events were discovered, each of whose extreme X-ray luminosity and synchrotron radio emission were interpreted as the onset of emission from a relativistic jet. Here we report a luminous ultraviolet-optical flare from the nuclear region of an inactive galaxy at a redshift of 0.1696. The observed continuum is cooler than expected for a simple accreting debris disk, but the well-sampled rise and decay of the light curve follow the predicted mass accretion rate and can be modelled to determine the time of disruption to an accuracy of two days. The black hole has a mass of about two million solar masses, modulo a factor dependent on the mass and radius of the star disrupted. On the basis of the spectroscopic signature of ionized helium from the unbound debris, we determine that the disrupted star was a helium-rich stellar core.

5.
Ann N Y Acad Sci ; 688: 113-23, 1993 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26469415
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...