Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37112073

RESUMO

This paper presents a comprehensive review of the literature for fabricating PDMS microfluidic devices by employing additive manufacturing (AM) processes. AM processes for PDMS microfluidic devices are first classified into (i) the direct printing approach and (ii) the indirect printing approach. The scope of the review covers both approaches, though the focus is on the printed mold approach, which is a kind of the so-called replica mold approach or soft lithography approach. This approach is, in essence, casting PDMS materials with the mold which is printed. The paper also includes our on-going effort on the printed mold approach. The main contribution of this paper is the identification of knowledge gaps and elaboration of future work toward closing the knowledge gaps in fabrication of PDMS microfluidic devices. The second contribution is the development of a novel classification of AM processes from design thinking. There is also a contribution in clarifying confusion in the literature regarding the soft lithography technique; this classification has provided a consistent ontology in the sub-field of the fabrication of microfluidic devices involving AM processes.

2.
Polymers (Basel) ; 15(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36850290

RESUMO

Polydimethylsiloxane (PDMS) is a widely used material for soft lithography and microfabrication. PDMS exhibits some promising properties suitable for building microfluidic devices; however, bonding PDMS to PDMS and PDMS to other materials for multilayer structures in microfluidic devices is still challenging due to the hydrophobic nature of the surface of PDMS. This paper presents a simple yet effective method to increase the bonding strength for PDMS-to-PDMS using isopropyl alcohol (IPA). The experiment was carried out to evaluate the bonding strength for both the natural-cured and the heat-cured PDMS layer. The results show the effectiveness of our approach in terms of the improved irreversible bonding strength, up to 3.060 MPa, for the natural-cured PDMS and 1.373 MPa for the heat-cured PDMS, while the best bonding strength with the existing method in literature is 1.9 MPa. The work is preliminary because the underlying mechanism is only speculative and open for future research.

3.
New Space ; 10(3): 259-273, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36199953

RESUMO

A main goal of human space exploration is to develop humanity into a multi-planet species where civilization extends beyond planet Earth. Establishing a self-sustaining human presence on Mars is key to achieving this goal. In situ resource utilization (ISRU) on Mars is a critical component to enabling humans on Mars to both establish long-term outposts and become self-reliant. This article focuses on a mission architecture using the SpaceX Starship as cargo and crew vehicles for the journey to Mars. The first Starships flown to Mars will be uncrewed and will provide unprecedented opportunities to deliver ∼100 metric tons of cargo to the martian surface per mission and conduct robotic precursor work to enable a sustained and self-reliant human presence on Mars. We propose that the highest priority activities for early uncrewed Starships include pre-placement of supplies, developing infrastructure, testing of key technologies, and conducting resource prospecting to map and characterize water ice for future ISRU purposes.

4.
Sensors (Basel) ; 21(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572485

RESUMO

This paper provides a critical review of tactile and thermal sensors which are built from carbon nanomaterial-filled polymer composites (CNPCs). To make the review more comprehensive and systematic, the sensors are viewed as a system, and a general knowledge architecture for a system called function-context-behavior-principle-state-structure (FCBPSS) is employed to classify information as well as knowledge related to CNPC sensors. FCBPSS contains six basic concepts, namely, F: function, C: context, B: behavior, P: principle, and SS: state and structure. As such, the principle that explains why such composites can work as temperature and pressure sensors, various structures of the CNPC sensor, which realize the principle, and the behavior and performance of CNPC sensors are discussed in this review. This review also discusses the fabrication of the CNPC sensor. Based on the critical review and analysis, the future directions of research on the CNPC sensor are discussed; in particular, the need to have a network of CNPC sensors that can be installed on curved bodies such as those of robots is elaborated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...