Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 21(9): 244, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26318200

RESUMO

Performance of 18 DFT functionals (B1B95, B3LYP, B3PW91, B97D, BHandHLYP, BMK, CAM-B3LYP, HSEh1PBE, M06-L, mPW1PW91, O3LYP, OLYP, OPBE, PBE1PBE, tHCTHhyb, TPSSh, wB97xD, VSXC) in combinations with six basis sets (cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, aug-cc-pVTZ, IGLO-II, and IGLO-III) and three methods for calculating magnetic shieldings (GIAO, CSGT, IGAIM) was tested for predicting (1)H and (13)C chemical shifts for 25 organic compounds, for altogether 86 H and 88 C atoms. Proton shifts varied between 1.03 ppm to 12.00 ppm and carbon shifts between 7.87 ppm to 209.28 ppm. It was found that the best method for calculating (13)C shifts is PBE1PBE/aug-cc-pVDZ with CSGT or IGAIM approaches (mae = 1.66 ppm), for (1)H the best results were obtained with HSEh1PBE, mPW1PW91, PBE1PBE, CAM-B3LYP, and B3PW91 functionals with cc-pVTZ basis set and with CSGT or IGAIM approaches (mae = 0.28 ppm). We found that often larger basis sets do not give better results for chemical shifts. The best basis sets for calculating (1)H and (13)C chemical shifts were cc-pVTZ and aug-cc-pVDZ, respectively. CSGT and IGAIM NMR approaches can perform really well and are in most cases better than popular GIAO approach.

2.
J Chem Theory Comput ; 9(9): 3947-58, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26592390

RESUMO

Gas-phase acidities and basicities were calculated for 64 neutral bases (covering the scale from 139.9 kcal/mol to 251.9 kcal/mol) and 53 neutral acids (covering the scale from 299.5 kcal/mol to 411.7 kcal/mol). The following methods were used: AM1, PM3, PM6, PDDG, G2, G2MP2, G3, G3MP2, G4, G4MP2, CBS-QB3, B1B95, B2PLYP, B2PLYPD, B3LYP, B3PW91, B97D, B98, BLYP, BMK, BP86, CAM-B3LYP, HSEh1PBE, M06, M062X, M06HF, M06L, mPW2PLYP, mPW2PLYPD, O3LYP, OLYP, PBE1PBE, PBEPBE, tHCTHhyb, TPSSh, VSXC, X3LYP. The addition of the Grimmes empirical dispersion correction (D) to B2PLYP and mPW2PLYP was evaluated, and it was found that adding this correction gave more-accurate results when considering acidities. Calculations with B3LYP, B97D, BLYP, B2PLYPD, and PBE1PBE methods were carried out with five basis sets (6-311G**, 6-311+G**, TZVP, cc-pVTZ, and aug-cc-pVTZ) to evaluate the effect of basis sets on the accuracy of calculations. It was found that the best basis sets when considering accuracy of results and needed time were 6-311+G** and TZVP. Among semiempirical methods AM1 had the best ability to reproduce experimental acidities and basicities (the mean absolute error (mae) was 7.3 kcal/mol). Among DFT methods the best method considering accuracy, robustness, and computation time was PBE1PBE/6-311+G** (mae = 2.7 kcal/mol). Four Gaussian-type methods (G2, G2MP2, G4, and G4MP2) gave similar results to each other (mae = 2.3 kcal/mol). Gaussian-type methods are quite accurate, but their downside is the relatively long computational time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA