Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Turk J Chem ; 48(1): 50-64, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544887

RESUMO

The magnetic mesoporous silica material, Mag-MCM-41, was synthesized by coating magnetite (Fe3O4) nanoparticles with a mesoporous material called MCM-41. Mag-MCM-41 and modified nanomaterials Mag-MCM-41-NN and Mag-MCM-41-NN-Fe+3 which were modified with aminopropyl functional groups. In water and wastewater, phosphate anions are considered significant contaminants due to their detrimental impact on the environment. They promote the growth of algae, leading to eutrophication. The purpose of this study is to investigate the removal of phosphate anions from aqueous solutions using modified magnetic silica particles. The Mag-MCM-41 material exhibits hexagonal properties and belongs to the class of "mesoporous" materials. It has a surface area of 923 m2.g-1, which was determined through N2 adsorption-desorption isotherms, FTIR, TEM, BET, and SAXS analysis. Kinetic and adsorption isotherm studies were conducted using Mag-MCM-41, Mag-MCM-41-NN, and Mag-MCM-41-NN-Fe+3 adsorbents to examine the behavior of phosphate anions. The kinetic and adsorption isotherm studies of phosphate anions revealed that the adsorption process on Mag-MCM-41, Mag-MCM-41-NN, and Mag-MCM-41-NN-Fe+3 adsorbents followed the chemical adsorption mechanism. Phosphate adsorption on all adsorbents occurred in a monolayer, and the MCM-41-NN-Fe+3 adsorbent exhibited the highest maximum adsorption capacity (qm) value of 112.87 mg.g-1 compared to the other adsorbents.

2.
Int J Mol Sci ; 23(16)2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36012388

RESUMO

New insights into the interactions between nanopesticides and edible plants are required in order to elucidate their impacts on human health and agriculture. Nanopesticides include formulations consisting of organic/inorganic nanoparticles. Drosophila melanogaster has become a powerful model in genetic research thanks to its genetic similarity to mammals. This project mainly aimed to generate new evidence for the toxic/genotoxic properties of different nanopesticides (a nanoemulsion (permethrin nanopesticides, 20 ± 5 nm), an inorganic nanoparticle as an active ingredient (copper(II) hydroxide [Cu(OH)2] nanopesticides, 15 ± 6 nm), a polymer-based nanopesticide (acephate nanopesticides, 55 ± 25 nm), and an inorganic nanoparticle associated with an organic active ingredient (validamycin nanopesticides, 1177 ± 220 nm)) and their microparticulate forms (i.e., permethrin, copper(II) sulfate pentahydrate (CuSO4·5H2O), acephate, and validamycin) widely used against agricultural pests, while also showing the merits of using Drosophila-a non-target in vivo eukaryotic model organism-in nanogenotoxicology studies. Significant biological effects were noted at the highest doses of permethrin (0.06 and 0.1 mM), permethrin nanopesticides (1 and 2.5 mM), CuSO4·5H2O (1 and 5 mM), acephate and acephate nanopesticides (1 and 5 mM, respectively), and validamycin and validamycin nanopesticides (1 and 2.5 mM, respectively). The results demonstrating the toxic/genotoxic potential of these nanopesticides through their impact on cellular internalization and gene expression represent significant contributions to future nanogenotoxicology studies.


Assuntos
Cobre , Permetrina , Animais , Cobre/toxicidade , Drosophila , Drosophila melanogaster , Humanos , Hidróxidos , Inositol/análogos & derivados , Mamíferos , Compostos Organotiofosforados , Permetrina/toxicidade , Fosforamidas
3.
Phys Chem Chem Phys ; 21(23): 12434-12445, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31143906

RESUMO

Previous studies have shown that the water-air interface and a number of water molecule layers just below it, the surface region, have significantly different physico-chemical properties, such as lower relative permittivity and density, than bulk water. The properties in the surface region of water favor weakly hydrated species as neutral molecules, while ions requiring strong hydration and shielding of their charge are disfavored. In this study the equilibria NH4+(aq) + RCOO-(aq) ⇌ NH3(aq) + RCOOH(aq) are investigated for R = CnH2n+1, n = 0-8, as open systems, where ammonia and small carboxylic acids in the gas phase above the water surface are removed from the system by a gentle controlled flow of nitrogen to mimic the transport of volatile compounds from water droplets into air. It is shown that this non-equilibrium transport of chemicals can be sufficiently large to cause a change of the chemical content of the aqueous bulk. Furthermore, X-ray photoelectron spectroscopy (XPS) has been used to determine the relative concentration of alkyl carboxylic acids and their conjugated alkyl carboxylates in aqueous surfaces using a micro-jet. These studies confirm that neutral alkyl carboxylic acids are accumulated in the surface region, while charged species, as alkyl carboxylates, are depleted. The XPS studies show also that the hydrophobic alkyl chains are oriented upwards into regions with lower relative permittivity and density, thus perpendicular to the aqueous surface. These combined results show that there are several chemical equilibria between the aqueous bulk and the surface region. The analytical studies show that the release of mainly ammonia is dependent on its concentration in the surface region, as long as the solubility of the carboxylic acid in the surface region is sufficiently high to avoid a precipitation in/on the water-air interface. However, for n-octyl- and n-nonylcarboxylic acid the solubility is sufficiently low to cause precipitation. The combined analytical and surface speciation studies in this work show that the equilibria involving the surface region are fast. The results from this study increase the knowledge about the distribution of chemical species in the surface region at and close to the water-air interface, and the transport of chemicals from water to air in open systems.

4.
Colloids Surf B Biointerfaces ; 128: 245-253, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25707751

RESUMO

Multifunctional magnetic nanoparticles were synthesized for potential bio-imaging applications. Uniform PEI coated magnetic Fe3O4 (PEI-Fe3O4) nanoparticles were prepared by a modified co-precipitation method and then covalently conjugated with a fluorophore molecule, Bodipy-5 by the DCC/DMAP coupling reaction. The covalent binding of Bodipy-5 to the PEI coated magnetic Fe3O4 nanoparticles were confirmed by means of FTIR and XPS measurements. The imaging ability of the Bodipy coated magnetic nanoparticles was determined on two human cancer cells, A549 (human lung adenocarcinoma epithelial) and Ishikawa (endometrial adenocarcinoma), for the first time. Cytotoxicity of BOD-MNPs was evaluated in both cancer cells and healthy human umbilical vein endothelial cell line (HUVEC) by standard MTT (3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. In vitro activities of the nanoparticles were also investigated.


Assuntos
Compostos de Boro/química , Óxido Ferroso-Férrico/química , Corantes Fluorescentes/química , Nanopartículas de Magnetita/química , Imagem Molecular/métodos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/ultraestrutura , Humanos , Nanopartículas de Magnetita/ultraestrutura , Tamanho da Partícula , Polietilenoimina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...