Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteins ; 14(2): 237-48, 1992 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-1409571

RESUMO

The hydrogen exchange kinetics of 68 individual amide protons in the native state of hen lysozyme have been measured at pH 7.5 and 30 degrees C by 2D NMR methods. These constitute the most protected subset of amides, with exchange half lives some 10(5)-10(7) times longer than anticipated from studies of small model peptides. The observed distribution of rates under these conditions can be rationalized to a large extent in terms of the hydrogen bonding of individual amides and their burial from bulk solvent. Exchange rates have also been measured in a reversibly denatured state of lysozyme; this was made possible under very mild conditions, pH 2.0 35 degrees C, by lowering the stability of the native state through selective cleavage of the Cys-6-Cys-127 disulfide cross-link (CM6-127 lysozyme). In this state the exchange rates for the majority of amides approach, within a factor of 5, the values anticipated from small model peptides. For a few amides, however, there is evidence for significant retardation (up to nearly 20-fold) relative to the predicted rates. The pattern of protection observed under these conditions does not reflect the behavior of the protein under strongly native conditions, suggesting that regions of native-like structure do not persist significantly in the denatured state of CM6-127 lysozyme. The pattern of exchange rates from the native protein at high temperature, pH 3.8 69 degrees C, resembles that of the acid-denatured state, suggesting that under these conditions the exchange kinetics are dominated by transient global unfolding. The rates of folding and unfolding under these conditions were determined independently by magnetization transfer NMR methods, enabling the intrinsic exchange rates from the denatured state to be deduced on the basis of this model, under conditions where the predominant equilibrium species is the native state. Again, in the case of most amides these rates showed only limited deviation from those predicted by a simple random coil model. This reinforces the view that these denatured states of lysozyme have little persistent residual order and contrasts with the behavior found for compact partially folded states of proteins, including an intermediate detected transiently during the refolding of hen lysozyme.


Assuntos
Hidrogênio/química , Muramidase/química , Amidas/química , Sequência de Aminoácidos , Animais , Galinhas , Proteínas do Ovo/química , Feminino , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Desnaturação Proteica
2.
Proteins ; 9(4): 248-66, 1991.
Artigo em Inglês | MEDLINE | ID: mdl-1650946

RESUMO

Chemical shifts of resonances of specific protons in the 1H NMR spectrum of thermally denatured hen lysozyme have been determined by exchange correlation with assigned native state resonances in 2D NOESY spectra obtained under conditions where the two states are interconverting. There are subtle but widespread deviations of the measured shifts from the values which would be anticipated for a random coil; in the case of side chain protons these are virtually all net upfield shifts and it is shown that this may be the averaged effect of interactions with aromatic rings in a partially collapsed denatured state. In a very few cases, notably that of two sequential tryptophan residues, it is possible to interpret these effects in terms of specific, local interresidue interactions. Generally, however, there is no correlation with either native state shift perturbations or with sequence proximity to aromatic groups. Diminution of most of the residual shift perturbations on reduction of the disulfide cross-links confirms that they are not simply effects of residues adjacent in the sequence. Similar effects of chemical denaturants, with the disulfides intact, demonstrate that the shift perturbations reflect an enhanced tendency to side chain clustering in the thermally denatured state. The temperature dependences of the shift perturbations suggest that this clustering is noncooperative and is driven by small, favorable enthalpy changes. While the extent of conformational averaging is clearly much greater than that observed for a homologous protein, alpha-lactalbumin, in its partially folded "molten globule" state, the results clearly show that thermally denatured lysozyme differs substantially from a random coil, principally in that it is partially hydrophobically collapsed.


Assuntos
Muramidase/química , Análise por Conglomerados , Dissulfetos/química , Lactalbumina/química , Espectroscopia de Ressonância Magnética , Muramidase/metabolismo , Conformação Proteica , Desnaturação Proteica , Prótons , Solubilidade , Termodinâmica , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...