Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 15(38): 15971-80, 2013 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-23959329

RESUMO

Two-dimensional sheets of transition metal (Mo and W) sulfides are attracting strong attention due to the unique electronic and optical properties associated with the material in its single-layer form. The single-layer MoS2 and WS2 are already in widespread commercial use in catalytic applications as both hydrotreating and hydrocracking catalysts. Consequently, characterization of the morphology and atomic structure of such particles is of utmost importance for the understanding of the catalytic active phase. However, in comparison with the related MoS2 system only little is known about the fundamental properties of single-layer WS2 (tungstenite). Here, we use an interplay of atom-resolved Scanning Tunneling Microscopy (STM) studies of Au(111)-supported WS2 nanoparticles and calculated edge structures using Density Functional Theory (DFT) to reveal the equilibrium morphology and prevalent edge structures of single-layer WS2. The STM results reveal that the single layer S-W-S sheets adopt a triangular equilibrium shape under the sulfiding conditions of the synthesis, with fully sulfided edges. The predominant edge structures are determined to be the (101[combining macron]0) W-edge, but for the smallest nanoclusters also the (1[combining macron]010) S-edges become important. DFT calculations are used to construct phase diagrams of the WS2 edges, and describe their sulfur and hydrogen coordination under different conditions, and in this way shed light on the catalytic role of WS2 edges.

3.
ACS Nano ; 4(8): 4677-82, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20604573

RESUMO

In hydrodesulfurization (HDS) of fossil fuels, the sulfur levels are reduced by sulfur extraction from hydrocarbons through a series of catalyzed reaction steps on low-coordinated sites on molybdenum disulfide (MoS(2)) nanoclusters. By means of scanning tunneling microscopy (STM), we show that the adsorption properties of MoS(2) nanoclusters toward the HDS refractory dibenzothiophene (DBT) vary dramatically with small changes in the cluster size. STM images reveal that MoS(2) nanoclusters with a size above a threshold value of 1.5 nm react with hydrogen to form so-called sulfur vacancies predominately located at edge sites, but these edge vacancies are not capable of binding DBT directly. In contrast, MoS(2) nanoclusters below the threshold perform remarkably better. Here, sulfur vacancies form predominantly at the corner sites, and these vacancies show a high affinity for DBT. The results thus indicate that very small MoS(2) nanoclusters may have unique catalytic properties for the production of clean fuels.

5.
Nat Nanotechnol ; 2(1): 53-8, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18654208

RESUMO

Molybdenum disulphide nanostructures are of interest for a wide variety of nanotechnological applications ranging from the potential use of inorganic nanotubes in nanoelectronics to the active use of nanoparticles in heterogeneous catalysis. Here, we use atom-resolved scanning tunnelling microscopy to systematically map and classify the atomic-scale structure of triangular MoS2 nanocrystals as a function of size. Instead of a smooth variation as expected from the bulk structure of MoS2, we observe a very strong size dependence for the cluster morphology and electronic structure driven by the tendency to optimize the sulphur excess present at the cluster edges. By analysing of the atomic-scale structure of clusters, we identify the origin of the structural transitions occurring at unique cluster sizes. The novel findings suggest that good size control during the synthesis of MoS2 nanostructures may be used for the production of chemically or optically active MoS2 nanomaterials with superior performance.


Assuntos
Cristalização/métodos , Dissulfetos/química , Molibdênio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Enxofre/química , Catálise , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
6.
J Am Chem Soc ; 128(42): 13950-8, 2006 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-17044723

RESUMO

Supported MoS(2) nanoparticles constitute the active component of the important hydrotreating catalysts used for industrial upgrading and purification of the oil feedstock for the production of fossil fuels with a low environmental load. We have synthesized and studied a model system of the hydrotreating catalyst consisting of MoS(2) nanoclusters supported on a graphite surface in order to resolve a number of very fundamental questions related to the atomic-scale structure and morphology of the active clusters and in particular the effect of a substrate used in some types of hydrotreating catalysts. Scanning tunneling microscopy (STM) is used to image the atomic-scale structure of graphite-supported MoS(2) nanoclusters in real space. It is found that the pristine graphite (0001) surface does not support a high dispersion of MoS(2), but by introducing a small density of defects in the surface, highly dispersed MoS(2) nanoclusters could be synthesized on the graphite. From high-resolution STM images it is found that MoS(2) nanoclusters synthesized at low temperature in a sulfiding atmosphere preferentially grow as single-layer clusters, whereas clusters synthesized at 1200 K grow as multilayer slabs oriented with the MoS(2)(0001) basal plane parallel to the graphite surface. The morphology of both single-layer and multilayer MoS(2) nanoclusters is found to be preferentially hexagonal, and atom-resolved images of the top facet of the clusters provide new atomic-scale information on the MoS(2)-HOPG bonding. The structure of the two types of catalytically interesting edges terminating the hexagonal MoS(2) nanoclusters is also resolved in atomic detail in STM images, and from these images it is possible to reveal the atomic structure of both edges and the location and coverage of sulfur and hydrogen adsorbates.

7.
J Phys Chem B ; 109(6): 2245-53, 2005 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-16851217

RESUMO

Density functional theory is used to investigate the origin of the activity differences between Type I and Type II MoS2-based structures in hydrotreating catalysts. It is well known that the Type II structures, where only weak interactions with the support exist, have a higher catalytic activity than Type I structures, where Mo-O linkages to the alumina are present. The present results show that the differences in activities for MoS2 and Co-Mo-S structures can be attributed to the electronic and bonding differences introduced by the bridging O bonds. We find that the Mo-O linkages are most probably located on the (1010) S edge. The presence of oxygen linkages increases the energy required to form sulfur vacancies significantly so that almost no vacancies can be formed at these and neighboring sites. In this way, the reactivity of the S edge is reduced. In addition, the studies also show that the linkages introduce changes in the one-dimensional metallic-like brim states. Furthermore, the presence of oxygen linkages also changes the energetics of hydrogen adsorption, which becomes less exothermic on sulfur sites directly above linkages and more exothermic on sulfur sites adjacent to linkages. The present results explain previously observed differences in Type I-Type II transition temperatures for Co-Mo-S structures with different Co contents.

8.
Science ; 295(5562): 2053-5, 2002 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-11896271

RESUMO

In situ transmission electron microscopy is used to obtain atom-resolved images of copper nanocrystals on different supports. These are catalysts for methanol synthesis and hydrocarbon conversion processes for fuel cells. The nanocrystals undergo dynamic reversible shape changes in response to changes in the gaseous environment. For zinc oxide-supported samples, the changes are caused both by adsorbate-induced changes in surface energies and by changes in the interfacial energy. For copper nanocrystals supported on silica, the support has negligible influence on the structure. Nanoparticle dynamics must be included in the description of catalytic and other properties of nanomaterials. In situ microscopy offers possibilities for obtaining the relevant atomic-scale insight.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...