Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 3(5): 289-93, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15077105

RESUMO

The surface energy of a solid measures the energy cost of increasing the surface area. All normal solids therefore have a positive surface energy-if it had been negative, the solid would disintegrate. For this reason it is also generally believed that when certain ceramics can be found in a highly porous form, this is a metastable state, which will eventually sinter into the bulk solid at high temperatures. We present theoretical evidence suggesting that for theta-alumina, the surface energy is strongly dependent on the size of the crystallites, and that for some facets it is negative for thicknesses larger than approximately 1 nm. This suggests a completely new picture of porous alumina in which the high-surface-area, nanocrystalline form is the thermodynamic ground state. The negative surface energy is found to be related to a particularly strongly adsorbed state of dissociated water on some alumina surfaces. We also present new experimental evidence based on infrared spectroscopy, in conjunction with X-ray diffraction and surface-area measurements, that theta-alumina has indeed very stable surface OH groups at high temperatures, and that this form of alumina does not sinter even at temperatures up to 1,300 K.


Assuntos
Óxido de Alumínio/química , Cristalografia/métodos , Modelos Químicos , Modelos Moleculares , Nanotecnologia/métodos , Água/química , Simulação por Computador , Transferência de Energia , Teste de Materiais , Conformação Molecular , Tensão Superficial , Temperatura , Difração de Raios X
2.
J Am Chem Soc ; 126(15): 4926-33, 2004 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-15080698

RESUMO

The first observations of the complete manifold of spinning sidebands (ssbs) including both the central and satellite transitions in (51)V MAS NMR spectra of surface vanadia nanoparticles on titania in DeNO(x) catalysts are presented. (51)V quadrupole coupling and chemical shift anisotropy parameters for the dominating vanadia structure are determined from (51)V MAS NMR spectra recorded at 9.4 and 14.1 T. Based on correlations previously established between (51)V NMR parameters and crystal structure data for inorganic vanadates, the NMR data are consistent with vanadium in a distorted octahedral oxygen coordination environment for the so-called strongly bonded vanadia species on the surface. The investigation includes two vanadia-titania model catalysts and six industrial-type DeNO(x) catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...