Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Sci Rep ; 14(1): 12365, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811590

RESUMO

SARS-CoV-2 is the causative agent of COVID-19. Timely and accurate diagnostic testing is vital to contain the spread of infection, reduce delays in treatment and care, and inform patient management. Optimal specimen type (e.g. nasal swabs or saliva), timing of sampling, viral marker assayed (RNA or antigen), and correlation with viral infectivity and COVID-19 symptoms severity remain incompletely defined. We conducted a field study to evaluate SARS-CoV-2 viral marker kinetics starting from very early times after infection. We measured RNA and antigen levels in nasal swabs and saliva, virus outgrowth in cell culture from nasal swabs, and antibody levels in blood in a cohort of 30 households. Nine household contacts (HHC) became infected with SARS-CoV-2 during the study. Viral RNA was detected in saliva specimens approximately 1-2 days before nasal swabs in six HHC. Detection of RNA was more sensitive than of antigen, but antigen detection was better correlated with culture positivity, a proxy for contagiousness. Anti-nucleocapsid antibodies peaked one to three weeks post-infection. Viral RNA and antigen levels were higher in specimens yielding replication competent virus in cell culture. This study provides important data that can inform how to optimally interpret SARS-CoV-2 diagnostic test results.


Assuntos
Anticorpos Antivirais , Biomarcadores , COVID-19 , Características da Família , RNA Viral , SARS-CoV-2 , Saliva , Humanos , COVID-19/diagnóstico , COVID-19/transmissão , COVID-19/virologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/imunologia , Saliva/virologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Feminino , Antígenos Virais/análise , Antígenos Virais/imunologia , Cinética , Masculino , Adulto , Pessoa de Meia-Idade
2.
Front Microbiol ; 14: 1193320, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342561

RESUMO

Expanding antiviral treatment options against SARS-CoV-2 remains crucial as the virus evolves under selection pressure which already led to the emergence of several drug resistant strains. Broad spectrum host-directed antivirals (HDA) are promising therapeutic options, however the robust identification of relevant host factors by CRISPR/Cas9 or RNA interference screens remains challenging due to low consistency in the resulting hits. To address this issue, we employed machine learning, based on experimental data from several knockout screens and a drug screen. We trained classifiers using genes essential for virus life cycle obtained from the knockout screens. The machines based their predictions on features describing cellular localization, protein domains, annotated gene sets from Gene Ontology, gene and protein sequences, and experimental data from proteomics, phospho-proteomics, protein interaction and transcriptomic profiles of SARS-CoV-2 infected cells. The models reached a remarkable performance suggesting patterns of intrinsic data consistency. The predicted HDF were enriched in sets of genes particularly encoding development, morphogenesis, and neural processes. Focusing on development and morphogenesis-associated gene sets, we found ß-catenin to be central and selected PRI-724, a canonical ß-catenin/CBP disruptor, as a potential HDA. PRI-724 limited infection with SARS-CoV-2 variants, SARS-CoV-1, MERS-CoV and IAV in different cell line models. We detected a concentration-dependent reduction in cytopathic effects, viral RNA replication, and infectious virus production in SARS-CoV-2 and SARS-CoV-1-infected cells. Independent of virus infection, PRI-724 treatment caused cell cycle deregulation which substantiates its potential as a broad spectrum antiviral. Our proposed machine learning concept supports focusing and accelerating the discovery of host dependency factors and identification of potential host-directed antivirals.

3.
J Clin Virol ; 165: 105499, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37327554

RESUMO

SARS-CoV-2 is the causative agent of the acute respiratory disease COVID-19. In addition to the full length positive-sensed, single-stranded genomic RNA (gRNA), viral subgenomic RNAs (sgRNAs) that are required for expression of the 3' region of the genome are synthesized in virus-infected cells. However, whether these sgRNA-species might be used as a measure of active virus replication and to predict infectivity is still under debate. The commonly used methods to monitor and quantitate SARS-CoV-2 infections are based on RT-qPCR analysis and the detection of gRNA. The infectivity of a sample obtained from nasopharyngeal or throat swabs is associated with the viral load and inversely correlates with Ct-values, however, a cut-off value predicting the infectivity highly depends on the performance of the assay. Furthermore, gRNA derived Ct-values result from nucleic acid detection and do not necessarily correspond to active replicating virus. We established a multiplex RT-qPCR assay on the cobas 6800 omni utility channel concomitantly detecting SARS-CoV-2 gRNAOrf1a/b, sgRNAE,7a,N, and human RNaseP-mRNA used as human input control. We compared the target specific Ct-values with the viral culture frequency and performed ROC curve analysis to determine the assay sensitivity and specificity. We found no advantage in the prediction of viral culture when using sgRNA detection compared to gRNA only, since Ct-values for gRNA and sgRNA were highly correlated and gRNA offered a slightly more reliable predictive value. Single Ct-values alone only provide a very limited prediction for the presence of replication competent virus. Hence, careful consideration of the medical history including symptom onset has to be considered for risk stratification.


Assuntos
COVID-19 , RNA Viral , Humanos , RNA Viral/genética , SARS-CoV-2/genética , COVID-19/diagnóstico , RNA Subgenômico , Genômica , Replicação Viral
4.
Am J Physiol Cell Physiol ; 325(1): C129-C140, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37273239

RESUMO

Liver cirrhosis is the end stage of all chronic liver diseases and contributes significantly to overall mortality of 2% globally. The age-standardized mortality from liver cirrhosis in Europe is between 10 and 20% and can be explained by not only the development of liver cancer but also the acute deterioration in the patient's overall condition. The development of complications including accumulation of fluid in the abdomen (ascites), bleeding in the gastrointestinal tract (variceal bleeding), bacterial infections, or a decrease in brain function (hepatic encephalopathy) define an acute decompensation that requires therapy and often leads to acute-on-chronic liver failure (ACLF) by different precipitating events. However, due to its complexity and organ-spanning nature, the pathogenesis of ACLF is poorly understood, and the common underlying mechanisms leading to the development of organ dysfunction or failure in ACLF are still elusive. Apart from general intensive care interventions, there are no specific therapy options for ACLF. Liver transplantation is often not possible in these patients due to contraindications and a lack of prioritization. In this review, we describe the framework of the ACLF-I project consortium funded by the Hessian Ministry of Higher Education, Research and the Arts (HMWK) based on existing findings and will provide answers to these open questions.


Assuntos
Insuficiência Hepática Crônica Agudizada , Doença Hepática Terminal , Varizes Esofágicas e Gástricas , Humanos , Doença Hepática Terminal/complicações , Varizes Esofágicas e Gástricas/complicações , Hemorragia Gastrointestinal/complicações , Cirrose Hepática/complicações , Cirrose Hepática/terapia , Insuficiência Hepática Crônica Agudizada/terapia , Insuficiência Hepática Crônica Agudizada/etiologia
5.
iScience ; 26(2): 105944, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36644320

RESUMO

Reliable, easy-to-handle phenotypic screening platforms are needed for the identification of anti-SARS-CoV-2 compounds. Here, we present caspase 3/7 activity as a readout for monitoring the replication of SARS-CoV-2 isolates from different variants, including a remdesivir-resistant strain, and of other coronaviruses in numerous cell culture models, independently of cytopathogenic effect formation. Compared to other models, the Caco-2 subline Caco-2-F03 displayed superior performance. It possesses a stable SARS-CoV-2 susceptibility phenotype and does not produce false-positive hits due to drug-induced phospholipidosis. A proof-of-concept screen of 1,796 kinase inhibitors identified known and novel antiviral drug candidates including inhibitors of phosphoglycerate dehydrogenase (PHGDH), CDC like kinase 1 (CLK-1), and colony stimulating factor 1 receptor (CSF1R). The activity of the PHGDH inhibitor NCT-503 was further increased in combination with the hexokinase II (HK2) inhibitor 2-deoxy-D-glucose, which is in clinical development for COVID-19. In conclusion, caspase 3/7 activity detection in SARS-CoV-2-infected Caco-2-F03 cells provides a simple phenotypic high-throughput screening platform for SARS-CoV-2 drug candidates that reduces false-positive hits.

7.
Viruses ; 14(9)2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36146823

RESUMO

Some of the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are less susceptible to neutralization with post-vaccine sera and monoclonal antibodies targeting the viral spike glycoprotein. This raises concerns of disease control, transmissibility, and severity. Numerous substitutions have been identified to increase viral fitness within the nucleocapsid and nonstructural proteins, in addition to spike mutations. Therefore, we sought to generate infectious viruses carrying only the variant-specific spike mutations in an identical backbone to evaluate the impact of spike and non-spike mutations in the virus life cycle. We used en passant mutagenesis to generate recombinant viruses carrying spike mutations of B.1 and B.1.617.2 variants using SARS-CoV-2- bacterial artificial chromosome (BAC). Neutralization assays using clinical sera yielded comparable results between recombinant viruses and corresponding clinical isolates. Non-spike mutations for both variants neither seemed to effect neutralization efficiencies with monoclonal antibodies nor the response to treatment with inhibitors. However, live-cell imaging and microscopy revealed differences, such as persisting syncytia and pronounced cytopathic effect formation, as well as their progression between BAC-derived viruses and clinical isolates in human lung epithelial cell lines and primary bronchial epithelial cells. Complementary RNA analyses further suggested a potential role of non-spike mutations in infection kinetics.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Glicoproteínas/genética , Humanos , Mutação , RNA Complementar , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus
8.
Front Aging ; 3: 883724, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821813

RESUMO

The immune response is known to wane after vaccination with BNT162b2, but the role of age, morbidity and body composition is not well understood. We conducted a cross-sectional study in long-term care facilities (LTCFs) for the elderly. All study participants had completed two-dose vaccination with BNT162b2 five to 7 months before sample collection. In 298 residents (median age 86 years, range 75-101), anti-SARS-CoV-2 rector binding IgG antibody (anti-RBD-IgG) concentrations were low and inversely correlated with age (mean 51.60 BAU/ml). We compared the results to Health Care Workers (HCW) aged 18-70 years (n = 114, median age: 53 years), who had a higher mean anti-RBD-IgG concentration of 156.99 BAU/ml. Neutralization against the Delta variant was low in both groups (9.5% in LTCF residents and 31.6% in HCWs). The Charlson Comorbidity Index was inversely correlated with anti-RBD-IgG, but not the body mass index (BMI). A control group of 14 LTCF residents with known breakthrough infection had significant higher antibody concentrations (mean 3,199.65 BAU/ml), and 85.7% had detectable neutralization against the Delta variant. Our results demonstrate low but recoverable markers of immunity in LTCF residents five to 7 months after vaccination.

9.
EBioMedicine ; 82: 104158, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35834885

RESUMO

BACKGROUND: In recent months, Omicron variants of SARS-CoV-2 have become dominant in many regions of the world, and case numbers with Omicron subvariants BA.1 and BA.2 continue to increase. Due to numerous mutations in the spike protein, the efficacy of currently available vaccines, which are based on Wuhan-Hu 1 isolate of SARS-CoV-2, is reduced, leading to breakthrough infections. Efficacy of monoclonal antibody therapy is also likely impaired. METHODS: In our in vitro study using A549-AT cells constitutively expressing ACE2 and TMPRSS2, we determined and compared the neutralizing capacity of vaccine-elicited sera, convalescent sera and monoclonal antibodies against authentic SARS-CoV-2 Omicron BA.1 and BA.2 compared with Delta. FINDINGS: Almost no neutralisation of Omicron BA.1 and BA.2 was observed using sera from individuals vaccinated with two doses 6 months earlier, regardless of the type of vaccine taken. Shortly after the booster dose, most sera from triple BNT162b2-vaccinated individuals were able to neutralise both Omicron variants. In line with waning antibody levels three months after the booster, only weak residual neutralisation was observed for BA.1 (26%, n = 34, 0 median NT50) and BA.2 (44%, n = 34, 0 median NT50). In addition, BA.1 but not BA.2 was resistant to the neutralising monoclonal antibodies casirivimab/imdevimab, while BA.2 exhibited almost a complete evasion from the neutralisation induced by sotrovimab. INTERPRETATION: Both SARS-CoV-2 Omicron subvariants BA.1 and BA.2 escape antibody-mediated neutralisation elicited by vaccination, previous infection with SARS-CoV-2, and monoclonal antibodies. Waning immunity renders the majority of tested sera obtained three months after booster vaccination negative in BA.1 and BA.2 neutralisation. Omicron subvariant specific resistance to the monoclonal antibodies casirivimab/imdevimab and sotrovimab emphasizes the importance of genotype-surveillance and guided application. FUNDING: This study was supported in part by the Goethe-Corona-Fund of the Goethe University Frankfurt (M.W.) and the Federal Ministry of Education and Research (COVIDready; grant 02WRS1621C (M.W.).


Assuntos
COVID-19 , Vacinas Virais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais , Vacina BNT162 , COVID-19/terapia , Humanos , Imunização Passiva , SARS-CoV-2 , Soroterapia para COVID-19
10.
Viruses ; 13(9)2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34578275

RESUMO

The capacity of convalescent and vaccine-elicited sera and monoclonal antibodies (mAb) to neutralize SARS-CoV-2 variants is currently of high relevance to assess the protection against infections. We performed a cell culture-based neutralization assay focusing on authentic SARS-CoV-2 variants B.1.617.1 (Kappa), B.1.617.2 (Delta), B.1.427/B.1.429 (Epsilon), all harboring the spike substitution L452R. We found that authentic SARS-CoV-2 variants harboring L452R had reduced susceptibility to convalescent and vaccine-elicited sera and mAbs. Compared to B.1, Kappa and Delta showed a reduced neutralization by convalescent sera by a factor of 8.00 and 5.33, respectively, which constitutes a 2-fold greater reduction when compared to Epsilon. BNT2b2 and mRNA1273 vaccine-elicited sera were less effective against Kappa, Delta, and Epsilon compared to B.1. No difference was observed between Kappa and Delta towards vaccine-elicited sera, whereas convalescent sera were 1.51-fold less effective against Delta, respectively. Both B.1.617 variants Kappa (+E484Q) and Delta (+T478K) were less susceptible to either casirivimab or imdevimab. In conclusion, in contrast to the parallel circulating Kappa variant, the neutralization efficiency of convalescent and vaccine-elicited sera against Delta was moderately reduced. Delta was resistant to imdevimab, which, however, might be circumvented by combination therapy with casirivimab together.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Mutação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Alelos , Substituição de Aminoácidos , Linhagem Celular , Genótipo , Interações Hospedeiro-Patógeno , Humanos , Testes de Neutralização
11.
Front Microbiol ; 12: 701198, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394046

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the acute respiratory disease COVID-19, which has become a global concern due to its rapid spread. The common methods to monitor and quantitate SARS-CoV-2 infectivity in cell culture are so far time-consuming and labor-intensive. Using the Sleeping Beauty transposase system, we generated a robust and versatile cellular infection model that allows SARS-CoV-2 infection experiments compatible for high-throughput and live cell imaging. The model is based on lung derived A549 cells, which show a profound interferon response and convenient cell culture characteristics. ACE2 and TMPRSS2 were introduced for constitutive expression (A549-AT). Subclones with varying levels of ACE2/TMPRSS2 were screened for optimal SARS-CoV-2 susceptibility. Furthermore, extensive evaluation demonstrated that SARS-CoV-2 infected A549-AT cells were distinguishable from mock-infected cells and already showed approximately 12 h post infection a clear signal to noise ratio in terms of cell roughness, fluorescence and a profound visible cytopathic effect. Moreover, due to the high transfection efficiency and proliferation capacity, Sleeping Beauty transposase-based overexpression cell lines with a second inducible fluorescence reporter cassette (eGFP) can be generated in a very short time, enabling the investigation of host and restriction factors in a doxycycline-inducible manner. Thus, the novel model cell line allows rapid and sensitive monitoring of SARS-CoV-2 infection and the screening for host factors essential for viral replication.

13.
Adv Exp Med Biol ; 1318: 197-208, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33973180

RESUMO

Viral respiratory tract infections are prevalent in children. They have substantial effects on childhood morbidity throughout the world, especially in developing countries. In this chapter, we describe the preliminary characteristics of pediatric COVID-19 and discover that severe and critical disease in children is rare. Many children remain asymptomatic. The reason why severity increases with progressing age and largely spares children is not yet known. In the search for possible explanations, we explore key differences between the pediatric and adult immune responses to new pathogens, and in host factors, such as ACE2 abundance.


Assuntos
COVID-19 , Pediatria , Adulto , Criança , Humanos , Peptidil Dipeptidase A , SARS-CoV-2
14.
Microorganisms ; 9(4)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918332

RESUMO

BACKGROUND: International travel is a major driver of the introduction and spread of SARS-CoV-2. AIM: To investigate SARS-CoV-2 genetic diversity in the region of a major transport hub in Germany, we characterized the viral sequence diversity of the SARS-CoV-2 variants circulating in Frankfurt am Main, the city with the largest airport in Germany, from the end of October to the end of December 2020. METHODS: In total, we recovered 136 SARS-CoV-2 genomes from nasopharyngeal swab samples. We isolated 104 isolates that were grown in cell culture and RNA from the recovered viruses and subjected them to full-genome sequence analysis. In addition, 32 nasopharyngeal swab samples were directly sequenced. RESULTS AND CONCLUSION: We found 28 different lineages of SARS-CoV-2 circulating during the study period, including the variant of concern B.1.1.7 (Δ69/70, N501Y). Six of the lineages had not previously been observed in Germany. We detected the spike protein (S) deletion Δ69/Δ70 in 15% of all sequences, a four base pair (bp) deletion (in 2.9% of sequences) and a single bp deletion (in 0.7% of sequences) in ORF3a, leading to ORF3a truncations. In four sequences (2.9%), an amino acid deletion at position 210 in S was identified. In a single sample (0.7%), both a 9 bp deletion in ORF1ab and a 7 bp deletion in ORF7a were identified. One sequence in lineage B.1.1.70 had an N501Y substitution while lacking the Δ69/70 in S. The high diversity of sequences observed over two months in Frankfurt am Main highlights the persisting need for continuous SARS-CoV-2 surveillance using full-genome sequencing, particularly in cities with international airport connections.

15.
J Clin Med ; 10(2)2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477365

RESUMO

Due to globally rising numbers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, resources for real-time reverse-transcription polymerase chain reaction (rRT-PCR)-based testing have been exhausted. In order to meet the demands of testing and reduce transmission, SARS-CoV-2 antigen-detecting rapid diagnostic tests (Ag-RDTs) are being considered. These tests are fast, inexpensive, and simple to use, but whether they detect potentially infectious cases has not been well studied. We evaluated three lateral flow assays (RIDA®QUICK SARS-CoV-2 Antigen (R-Biopharm), SARS-CoV-2 Rapid Antigen Test (Roche)), and NADAL® COVID-19 Ag Test (Nal von Minden GmbH, Regensburg, Germany) and one microfluidic immunofluorescence assay (SARS-CoV-2 Ag Test (LumiraDx GmbH, Cologne, Germany)) using 100 clinical samples. Diagnostic rRT-PCR and cell culture testing as a marker for infectivity were performed in parallel. The overall Ag-RDT sensitivity for rRT-PCR-positive samples ranged from 24.3% to 50%. However, for samples with a viral load of more than 6 log10 RNA copies/mL (22/100), typically seen in infectious individuals, Ag-RDT positivity was between 81.8% and 100%. Only 51.6% (33/64) of the rRT-PCR-positive samples were infectious in cell culture. In contrast, three Ag-RDTs demonstrated a more significant correlation with cell culture infectivity (61.8-82.4%). Our findings suggest that large-scale SARS-CoV-2 Ag-RDT-based testing can be considered for detecting potentially infective individuals and reducing the virus spread.

16.
J Clin Virol ; 135: 104713, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33352470

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can spread from symptomatic patients with COVID-19, but also from asymptomatic individuals. Therefore, robust surveillance and timely interventions are essential for the control of virus spread within the community. In this regard the frequency of testing and speed of reporting, but not the test sensitivity alone, play a crucial role. OBJECTIVES: In order to reduce the costs and meet the expanding demands in real-time RT-PCR (rRT-PCR) testing for SARS-CoV-2, complementary assays, such as rapid antigen tests, have been developed. Rigorous analysis under varying conditions is required to assess the clinical performance of these tests and to ensure reproducible results. RESULTS: We evaluated the sensitivity and specificity of a recently licensed rapid antigen test using 137 clinical samples in two institutions. Test sensitivity was between 88.2-89.6 % when applied to samples with viral loads typically seen in infectious patients. Of 32 rRT-PCR positive samples, 19 demonstrated infectivity in cell culture, and 84 % of these samples were reactive with the antigen test. Seven full-genome sequenced SARS-CoV-2 isolates and SARS-CoV-1 were detected with this antigen test, with no cross-reactivity against other common respiratory viruses. CONCLUSIONS: Numerous antigen tests are available for SARS-CoV-2 testing and their performance to detect infectious individuals may vary. Head-to-head comparison along with cell culture testing for infectivity may prove useful to identify better performing antigen tests. The antigen test analyzed in this study is easy-to-use, inexpensive, and scalable. It can be helpful in monitoring infection trends and thus has potential to reduce transmission.


Assuntos
Antígenos Virais/genética , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/genética , COVID-19/virologia , Células CACO-2 , Linhagem Celular Tumoral , Células Cultivadas , Genoma Viral/genética , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Carga Viral/imunologia
17.
mBio ; 11(6)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33323517

RESUMO

Viral noncoding RNAs have acquired increasing prominence as important regulators of infection and mediators of pathogenesis. Circular RNAs (circRNAs) generated by backsplicing events have been identified in several oncogenic human DNA viruses. Here, we show that Merkel cell polyomavirus (MCV), the etiologic cause of ∼80% of Merkel cell carcinomas (MCCs), also expresses circular RNAs. By RNase R-resistant RNA sequencing, four putative circRNA backsplice junctions (BSJs) were identified from the MCV early region (ER). The most abundantly expressed MCV circRNA, designated circMCV-T, is generated through backsplicing of all of ER exon II to form a 762-nucleotide (nt) circular RNA molecule. Curiously, circMCV-T, as well as two other less abundantly expressed putative MCV circRNAs, overlaps in a complementary fashion with the MCV microRNA (miRNA) locus that encodes MCV-miR-M1. circMCV-T is consistently detected in concert with linear T antigen transcripts throughout infection, suggesting a crucial role for this RNA molecule in the regulatory functions of the early region, known to be vital for viral replication. Knocking out the hairpin structure of MCV-miR-M1 in genomic early region expression constructs and using a new high-efficiency, recombinase-mediated, recircularized MCV molecular clone demonstrates that circMCV-T levels decrease in the presence of MCV-miR-M1, underscoring the interplay between MCV circRNA and miRNA. Furthermore, circMCV-T partially reverses the known inhibitory effect of MCV-miR-M1 on early gene expression. RNase R-resistant RNA sequencing of lytic rat polyomavirus 2 (RatPyV2) identified an analogously located circRNA, stipulating a crucial, conserved regulatory function of this class of RNA molecules in the family of polyomaviruses.IMPORTANCE Covalently closed circular RNAs were recently described in the human DNA tumor viruses Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), and human papillomavirus (HPV). Here, we show that MCV, another DNA tumor virus, generates circRNAs from its early regulatory region in concert with T antigen linear transcripts. MCV circMCV-T interacts with another MCV noncoding RNA, miR-M1, to functionally modulate early region transcript expression important for viral replication and long-term episomal persistence. This work describes a dynamic regulatory network integrating circRNA/miRNA/mRNA biomolecules and underscores the intricate functional modulation between several classes of polyomavirus-encoded RNAs in the control of viral replication.


Assuntos
Carcinoma de Célula de Merkel/virologia , Regulação Viral da Expressão Gênica , Poliomavírus das Células de Merkel/genética , MicroRNAs/genética , RNA Circular/genética , RNA Viral/genética , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Humanos , Poliomavírus das Células de Merkel/metabolismo , MicroRNAs/metabolismo , RNA Circular/metabolismo , RNA Viral/metabolismo , Replicação Viral
18.
JCI Insight ; 5(22)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33055416

RESUMO

The challenge of discovering a completely new human tumor virus of unknown phylogeny or sequence depends on detecting viral molecules and differentiating them from host molecules in the virus-associated neoplasm. We developed differential peptide subtraction (DPS) using differential mass spectrometry (dMS) followed by targeted analysis to facilitate this discovery. We validated this approach by analyzing Merkel cell carcinoma (MCC), an aggressive human neoplasm, in which ~80% of cases are caused by the human Merkel cell polyomavirus (MCV). Approximately 20% of MCC have a high mutational burden and are negative for MCV, but are microscopically indistinguishable from virus positive cases. Using 23 (12 MCV+, 11 MCV-) formalin-fixed MCC, DPS identified both viral and human biomarkers (MCV large T antigen, CDKN2AIP, SERPINB5, and TRIM29) that discriminate MCV+ and MCV- MCC. Statistical analysis of 498,131 dMS features not matching the human proteome by DPS revealed 562 (0.11%) to be upregulated in virus-infected samples. Remarkably, 4 (20%) of the top 20 candidate MS spectra originated from MCV T oncoprotein peptides and confirmed by reverse translation degenerate oligonucleotide sequencing. DPS is a robust proteomic approach to identify potentially novel viral sequences in infectious tumors when nucleic acid-based methods are not feasible.


Assuntos
Antígenos Virais de Tumores/metabolismo , Biomarcadores/metabolismo , Carcinoma de Célula de Merkel/diagnóstico , Infecções por Polyomavirus/complicações , Proteoma/metabolismo , Neoplasias Cutâneas/diagnóstico , Infecções Tumorais por Vírus/complicações , Carcinoma de Célula de Merkel/metabolismo , Carcinoma de Célula de Merkel/patologia , Carcinoma de Célula de Merkel/virologia , Formaldeído/química , Humanos , Poliomavírus das Células de Merkel/fisiologia , Infecções por Polyomavirus/metabolismo , Infecções por Polyomavirus/virologia , Proteoma/análise , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/virologia , Infecções Tumorais por Vírus/metabolismo , Infecções Tumorais por Vírus/virologia
19.
Int J Mol Sci ; 21(12)2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32575728

RESUMO

The novel coronavirus SARS-CoV-2 is the causative agent of the acute respiratory disease COVID-19, which has become a global concern due to its rapid spread. Meanwhile, increased demand for testing has led to a shortage of reagents and supplies and compromised the performance of diagnostic laboratories in many countries. Both the World Health Organization (WHO) and the Center for Disease Control and Prevention (CDC) recommend multi-step RT-PCR assays using multiple primer and probe pairs, which might complicate the interpretation of the test results, especially for borderline cases. In this study, we describe an alternative RT-PCR approach for the detection of SARS-CoV-2 RNA that can be used for the probe-based detection of clinical isolates in diagnostics as well as in research labs using a low-cost SYBR green method. For the evaluation, we used samples from patients with confirmed SARS-CoV-2 infections and performed RT-PCR assays along with successive dilutions of RNA standards to determine the limit of detection. We identified an M-gene binding primer and probe pair highly suitable for the quantitative detection of SARS-CoV-2 RNA for diagnostic and research purposes.


Assuntos
Técnicas de Laboratório Clínico/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Betacoronavirus/genética , Teste para COVID-19 , Células CACO-2 , Chlorocebus aethiops , Técnicas de Laboratório Clínico/economia , Técnicas de Laboratório Clínico/normas , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/economia , Proteínas M de Coronavírus , Custos e Análise de Custo , Humanos , RNA Viral/química , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/economia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , SARS-CoV-2 , Sensibilidade e Especificidade , Células Vero , Proteínas da Matriz Viral/genética
20.
mBio ; 11(1)2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31911496

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) has recently been found to generate circular RNAs (circRNAs) from several KSHV genes, most abundantly from K10 (viral interferon regulatory factor 4 [vIRF4]), K7.3, and polyadenylated nuclear (PAN) RNA. To define expression of these circRNAs, KSHV-infected cell lines, patient tissues, and purified virions were examined. KSHV circRNA expression was universally detected in tests of six primary effusion lymphoma (PEL) cell lines but ranged from low-level expression in BC-1 cells dually infected with tightly latent KSHV and Epstein-Barr virus to abundant expression in KSHV-only BCBL-1 cells with spontaneous virus production. Generally, the PAN/K7.3 locus broadly and bidirectionally generated circRNA levels that paralleled the corresponding linear RNA levels. However, RNA corresponding to a particular KSHV circularization site (circ-vIRF4) was minimally induced, despite linear vIRF4 RNA being activated by virus induction. In situ hybridization showed abundant circ-vIRF4 in noninduced PEL cells. All three KSHV circRNAs were isolated as nuclease-protected forms from gradient-purified virions collected from BrK.219 cells infected with a KSHV molecular clone. For circ-vIRF4, the fully processed form that is exported to the cytoplasm was incorporated into virus particles but the nuclear, intron-retaining form was not. The half-life of circ-vIRF4 was twice as long as that of its linear counterpart. The KSHV circRNAs could be detected at a higher rate than their corresponding linear counterparts by in situ hybridization in archival tissues and by reverse transcription-PCR (RT-PCR) in sera stored for over 25 years. In summary, KSHV circRNAs are expressed in infection-associated diseases, can be regulated depending on virus life cycle, and are incorporated into viral particles for preformed delivery, suggesting a potential function in early infection.IMPORTANCE KSHV has recently been found to encode circRNAs. circRNAs result from back-splicing of an upstream pre-mRNA splice donor exon-intron junction to an acceptor site, generating a covalently closed circle. This study revealed that for one KSHV region, the PAN/K7.3 locus, broadly and bidirectionally generated circRNA levels parallel corresponding linear RNA levels. Another KSHV circularization site (circ-vIRF4), however, showed expression that differed from that of the corresponding linear RNA. All KSHV circRNAs are incorporated into KSHV virions and are potentially expressed as immediate early products in newly infected cells.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/genética , RNA Circular , RNA Viral , Sarcoma de Kaposi/virologia , Vírion , Linhagem Celular , Humanos , Vírus Oncogênicos/genética , RNA não Traduzido , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...