Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sustain Chem Eng ; 4(9): 4974-4985, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27668136

RESUMO

Fast pyrolysis bio-oils are feasible energy carriers and a potential source of chemicals. Detailed characterization of bio-oils is essential to further develop its potential use. In this study, quantitative 13C nuclear magnetic resonance (13C NMR) combined with comprehensive two-dimensional gas chromatography (GC × GC) was used to characterize fast pyrolysis bio-oils originated from pinewood, wheat straw, and rapeseed cake. The combination of both techniques provided new information on the chemical composition of bio-oils for further upgrading. 13C NMR analysis indicated that pinewood-based bio-oil contained mostly methoxy/hydroxyl (≈30%) and carbohydrate (≈27%) carbons; wheat straw bio-oil showed to have high amount of alkyl (≈35%) and aromatic (≈30%) carbons, while rapeseed cake-based bio-oil had great portions of alkyl carbons (≈82%). More than 200 compounds were identified and quantified using GC × GC coupled to a flame ionization detector (FID) and a time of flight mass spectrometer (TOF-MS). Nonaromatics were the most abundant and comprised about 50% of the total mass of compounds identified and quantified via GC × GC. In addition, this analytical approach allowed the quantification of high value-added phenolic compounds, as well as of low molecular weight carboxylic acids and aldehydes, which exacerbate the unstable and corrosive character of the bio-oil.

2.
J Chromatogr A ; 1460: 135-46, 2016 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-27432785

RESUMO

Insight in the composition of the algae derived bio-oils is crucial for the development of efficient conversion processes and better upgrading strategies for microalgae. Comprehensive two-dimensional gas chromatography (GC×GC) coupled to nitrogen chemiluminescence detector (NCD) and time-of-flight mass spectrometer (TOF-MS) allows to obtain the detailed quantitative composition of the nitrogen containing compounds in the aqueous and the organic fraction of fast pyrolysis bio-oils from microalgae. Normal phase (apolar×mid-polar) and reverse phase column (polar×apolar) combination are investigated to optimize the separation of the detected nitrogen containing compounds. The reverse phase column combination gives the most detailed information in terms of the nitrogen containing compounds. The combined information from the GC×GC-TOF-MS (qualitative) and GC×GC-NCD (quantitative) with the use of a well-chosen internal standard, i.e. caprolactam, enables the identification and quantification of nitrogen containing compounds belonging to 13 different classes: amines, imidazoles, amides, imides, nitriles, pyrazines, pyridines, indoles, pyrazoles, pyrimidines, quinolines, pyrimidinediones and other nitrogen containing compounds which were not assigned to a specific class. The aqueous fraction mostly consists of amines (4.0wt%) and imidazoles (2.8wt%) corresponding to approximately 80wt% of the total identified nitrogen containing compounds. On the other hand, the organic fraction shows a more diverse distribution of nitrogen containing compounds with the majority of the compounds quantified as amides (3.0wt%), indoles (2.0wt%), amines (1.7wt%) and imides (1.3wt%) corresponding to approximately 65wt% of the total identified nitrogen containing compounds.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Microalgas/química , Compostos de Nitrogênio/análise , Óleos de Plantas/química , Aminas/análise , Aminas/química , Cromatografia de Fase Reversa , Medições Luminescentes , Microalgas/metabolismo , Compostos de Nitrogênio/química , Óleos de Plantas/metabolismo
3.
Bioresour Technol ; 207: 229-36, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26890798

RESUMO

Wild-type and two genetically engineered hybrid poplar lines were pyrolyzed in a micro-pyrolysis (Py-GC/MS) and a bench scale setup for fast and intermediate pyrolysis studies. Principal component analysis showed that the pyrolysis vapors obtained by micro-pyrolysis from wood of caffeic acid O-methyltransferase (COMT) and caffeoyl-CoA O-methyltransferase (CCoAOMT) down-regulated poplar trees differed significantly from the pyrolysis vapors obtained from non-transgenic control trees. Both fast micro-pyrolysis and intermediate pyrolysis of transgenic hybrid poplars showed that down-regulation of COMT can enhance the relative yield of guaiacyl lignin-derived products, while the relative yield of syringyl lignin-derived products was up to a factor 3 lower. This study indicates that lignin engineering via genetic modifications of genes involved in the phenylpropanoid and monolignol biosynthetic pathways can help to steer the pyrolytic production of guaiacyl and syringyl lignin-derived phenolic compounds such as guaiacol, 4-methylguaiacol, 4-ethylguaiacol, 4-vinylguaiacol, syringol, 4-vinylsyringol, and syringaldehyde present in the bio-oil.


Assuntos
Engenharia Genética/métodos , Hibridização Genética , Fenóis/metabolismo , Populus/genética , Populus/metabolismo , Temperatura , Vias Biossintéticas , Cromatografia Gasosa-Espectrometria de Massas , Lignina/metabolismo , Plantas Geneticamente Modificadas , Análise de Componente Principal
4.
J Chromatogr A ; 1359: 237-46, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25064537

RESUMO

The detailed compositional characterization of plastic waste pyrolysis oil was performed with comprehensive two-dimensional GC (GC×GC) coupled to four different detectors: a flame ionization detector (FID), a sulfur chemiluminescence detector (SCD), a nitrogen chemiluminescence detector (NCD) and a time of flight mass spectrometer (TOF-MS). The performances of different column combinations were assessed in normal i.e. apolar/mid-polar and reversed configurations for the GC×GC-NCD and GC×GC-SCD analyses. The information obtained from the four detectors and the use of internal standards, i.e. 3-chlorothiophene for the FID and the SCD and 2-chloropyridine for the NCD analysis, enabled the identification and quantification of the pyrolysis oil in terms of both group type and carbon number: hydrocarbon groups (n-paraffins, iso-paraffins, olefins and naphthenes, monoaromatics, naphthenoaromatics, diaromatics, naphthenodiaromatics, triaromatics, naphthenotriaromatics and tetra-aromatics), nitrogen (nitriles, pyridines, quinolines, indole, caprolactam, etc.), sulfur (thiols/sulfides, thiophenes/disulfides, benzothiophenes, dibenzothiophenes, etc.) and oxygen containing compounds (ketones, phenols, aldehydes, ethers, etc.). Quantification of trace impurities is illustrated for indole and caprolactam. The analyzed pyrolysis oil included a significant amount of nitrogen containing compounds (6.4wt%) and to a lesser extent sulfur containing compounds (0.6wt%). These nitrogen and sulfur containing compounds described approximately 80% of the total peak volume for respectively the NCD and SCD analysis. TOF-MS indicated the presence of the oxygen containing compounds. However only a part of the oxygen containing compounds (2.5wt%) was identified because of their low concentrations and possible overlap with the complex hydrocarbon matrix as no selective detector or preparative separation for oxygen compounds was used.


Assuntos
Cromatografia Gasosa/métodos , Plásticos/química , Resíduos Sólidos/análise , Cromatografia Gasosa/instrumentação , Ionização de Chama , Espectrometria de Massas
5.
Bioresour Technol ; 149: 582-5, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24140359

RESUMO

Solvent casting technique, which comprises multiple energy demanding steps including the dissolution of a polymer in a solvent followed by the evaporation of the solvent from the polymer solution, is currently the main technique for the production of xylan based polymeric materials. The present study shows that sufficient water content renders arabinoglucuronoxylan (AGX) polymers extrudable, enabling the production of AGX based polymeric materials in a single step via extrusion, which is economically advantageous to solvent casting process for mass production. AGX polymers with water content of 27% were found to yield extrudates at an extrusion temperature of 90°C. The extruded strips showed very good mechanical properties with an ultimate tensile strength of 76 ± 6 MPa and elongation at break value of 35 ± 8%, which were superior to the mechanical properties of the strips obtained from polylactic acid.


Assuntos
Polímeros/síntese química , Xilanos/isolamento & purificação , Zea mays/química , Biodegradação Ambiental , Módulo de Elasticidade , Ácido Láctico/química , Poliésteres , Polímeros/química , Temperatura , Resistência à Tração , Termogravimetria , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...