Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(14): 7471-7478, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38554266

RESUMO

Neuraminidases (NA) are sialic acid-cleaving enzymes that are used by both bacteria and viruses. These enzymes have sialoside structure-related binding and cleaving preferences. Differentiating between these enzymes requires using a large array of hard-to-access sialosides. In this work, we used electrochemical impedimetric biosensing to differentiate among several pathogene-related NAs. We used a limited set of sialosides and tailored the surface properties. Various sialosides were grafted on two different surfaces with unique properties. Electrografting on glassy carbon electrodes provided low-density sialoside-functionalized surfaces with a hydrophobic submonolayer. A two-step assembly on gold electrodes provided a denser sialoside layer on a negatively charged submonolayer. The synthesis of each sialoside required dozens of laborious steps. Utilizing the unique protein-electrode interaction modes resulted in richer biodata without increasing the synthetic load. These principles allowed for profiling NAs and determining the efficacy of various antiviral inhibitors.


Assuntos
Técnicas Biossensoriais , Ácidos Siálicos , Ácidos Siálicos/química , Neuraminidase/química , Neuraminidase/metabolismo , Ácido N-Acetilneuramínico/química , Bactérias
2.
ACS Chem Biol ; 18(3): 605-614, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36792550

RESUMO

Sialic acid recognition and hydrolysis are essential parts of cellular function and pathogen infectivity. Neuraminidases are enzymes that detach sialic acid from sialosides, and their inhibition is a prime target for viral infection treatment. The connectivity and type of sialic acid influence the recognition and hydrolysis activity of the many different neuraminidases. The common strategies to evaluate neuraminidase activity, recognition, and inhibition rely on extensive labeling and require a large amount of sialylated glycans. The above limitations make the effort of finding viral inhibitors extremely difficult. We used synthetic sialylated glycans and developed a label-free electrochemical method to show that sialoside structural features lead to selective neuraminidase biosensing. We compared Neu5Ac to Neu5Gc sialosides to evaluate the organism-dependent neuraminidase selectivity-sensitivity relationship. We demonstrated that the type of surface and the glycan monolayer density direct the response to either binding or enzymatic activity. We proved that while the hydrophobic glassy carbon surface increases the interaction with the enzyme hydrophobic interface, the negatively charged interface of the lipoic acid monolayer on gold repels the protein and enables biocatalysis. We showed that the sialoside monolayers can serve as tools to evaluate the inhibition of neuraminidases both by biocatalysis and molecular recognition.


Assuntos
Ácido N-Acetilneuramínico , Neuraminidase , Neuraminidase/metabolismo , Biocatálise , Ácidos Siálicos/química , Polissacarídeos
3.
Chemistry ; 29(7): e202202622, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36325647

RESUMO

Demystifying the sulfation code of glycosaminoglycans (GAGs) to induce precise homing of nanoparticles in tumor cells or neurons influences the development of a potential drug- or gene-delivery system. However, GAGs, particularly heparan sulfate (HS) and chondroitin sulfate (CS), are structurally highly heterogeneous, and synthesizing well-defined HS/CS composed nanoparticles is challenging. Here, we decipher how specific sulfation patterns on HS and CS regulate receptor-mediated homing of nanoprobes in primary and secondary cells. We discovered that aggressive cancer cells such as MDA-MB-231 displayed a strong uptake of GAG-nanoprobes compared to mild or moderately aggressive cancer cells. However, there was no selectivity towards the GAG sequences, thus indicating the presence of more than one form of receptor-mediated uptake. However, U87 cells, olfactory bulb, and hippocampal primary neurons showed selective or preferential uptake of CS-E-coated nanoprobes compared to other GAG-nanoprobes. Furthermore, mechanistic studies revealed that the 4,6-O-disulfated-CS nanoprobe used the CD44 and caveolin-dependent endocytosis pathway for uptake. These results could lead to new opportunities to use GAG nanoprobes in nanomedicine.


Assuntos
Sulfatos de Condroitina , Glicosaminoglicanos , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo
4.
ACS Appl Bio Mater ; 5(12): 5675-5681, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36375049

RESUMO

Nanotechnology-based vaccine development necessitates understanding the crucial biophysical properties of nanostructures that alter immune responses. In this study, we demonstrate the synergistic effect of gold nanoparticles (AuNPs) shapes with toll-like receptor (TLR) agonists in immune modulation activity. Our results showed that CpG- and imidazoquinoline-conjugated rod-shaped AuNPs display relatively fast uptake by bone marrow-derived macrophage cells but exhibit poor immunogenic responses compared to their spherical and star-shaped AuNP counterparts. Surprisingly, star-shaped AuNPs exhibited intense pro-inflammatory cytokine secretion. Further mechanistic studies showed that star-shaped AuNPs were abundantly localized in the late endosome and lysosomal regions, whereas rod-shaped AuNPs were majorly sequestered in the mitochondrial region. These findings reveal that the shape of the nanostructures plays a pivotal role in driving the adjuvant molecules toward their receptors and altering immune responses.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/uso terapêutico , Adjuvantes Imunológicos/farmacologia , Macrófagos , Imunidade
5.
ACS Chem Biol ; 17(5): 1122-1130, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35426652

RESUMO

Gold nanoparticles (AuNPs) have shown remarkable potential for vaccine development, but the influence of the size and shape of nanoparticles modulating the T-cell-dependent carbohydrate antigen processing and immunomodulation is poorly investigated. Here, we described how different shapes and sizes of gold nanostructures carrying adjuvant modulate carbohydrate-based antigen processing in murine dendritic cells (mDCs) and subsequent T-cell activation produce a robust antibody response. As a prototype, CpG-adjuvant-coated spherical and rod- and star-shaped AuNPs were conjugated to the tripodal Tn-glycopeptide antigen to study their DC uptake and activation of T-cells in a DCs/T-cell co-culture assay. Our results showed that the spherical and star-shaped AuNPs displayed relatively weak receptor-mediated uptake and endosomal sequestration; however, they induced a high level of T helper-1 (Th1) biasing immune responses compared with rod-shaped AuNPs. Furthermore, the in vivo administration of AuNPs showed that the small spherical and star-shaped AuNPs induced an effective anti-Tn-glycopeptide immunoglobulin (IgG) antibody response compared with rod-shaped AuNPs. These results indicated that one could obtain superior carbohydrate vaccines by varying the shape and size parameters of nanostructures.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Adjuvantes Imunológicos/farmacologia , Animais , Apresentação de Antígeno , Carboidratos , Células Dendríticas , Glicopeptídeos/farmacologia , Ouro/química , Imunomodulação , Nanopartículas Metálicas/química , Camundongos , Desenvolvimento de Vacinas
6.
Front Chem ; 9: 773027, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926401

RESUMO

Selectins are type-I transmembrane glycoproteins that are ubiquitously expressed on activated platelets, endothelial cells, and leukocytes. They bind to cell surface glycoproteins and extracellular matrix ligands, regulate the rolling of leukocytes in the blood capillaries, and recruit them to inflammatory sites. Hence, they are potential markers for the early detection and inhibition of inflammatory diseases, thrombosis, cardiovascular disorders, and tumor metastasis. Fucosylated and sialylated glycans, such as sialyl Lewisx, its isoform sialyl Lewisa, and heparan sulfate, are primary selectin ligands. Functionalization of these selectin-binding ligands on multivalent probes, such as nanoparticles, liposomes, and polymers, not only inhibits selectin-mediated biological activity but is also involved in direct imaging of the inflammation site. This review briefly summarizes the selectin-mediated various diseases such as thrombosis, cancer and recent progress in the different types of multivalent probes used to target selectins.

7.
Chem Asian J ; 14(9): 1344-1355, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30839167

RESUMO

Sialic acids (Sias) are fascinating nine-carbon monosaccharides that are primarily found on the terminus of the oligosaccharide chains of glycoproteins and glycolipids on cell surfaces. These Sias undergo a variety of structural modifications at their hydroxy and amine positions, thereby resulting in structural diversity and, hence, coordinating a variety of biological processes. However, deciphering the structural functions of such interactions is highly challenging, because the monovalent binding of Sias is extremely weak. Over the last decade, several multivalent Sia ligands have been synthesized to modulate their binding affinity with proteins/lectins. In this Minireview, we highlight recent developments in the synthesis of multivalent Sia probes and their potential applications. We will discuss four key multivalent families, that is, polymers, dendrimers, liposomes, and nanoparticles, and will emphasize the major parameters that are essential for the specific interactions of these molecules with proteins in biological systems.


Assuntos
Ácidos Siálicos/química , Dendrímeros/química , Lectinas/química , Lectinas/metabolismo , Lipossomos/química , Magnetismo , Nanopartículas/química , Polímeros/química , Ligação Proteica , Ácidos Siálicos/metabolismo
8.
ACS Appl Mater Interfaces ; 10(34): 28322-28330, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30058792

RESUMO

Sialic acid-conjugated nanocarriers have emerged as attractive biomarkers with promising biomedical applications. The translation of these nanocarriers into clinical applications requires in-depth assessment in animal models. However, due to the complexity, ethical concerns, and cost of the high-order animal system, there is an immediate need of information-rich simple animal models to decipher the biological significance. Herein, we performed in vivo head-to-head comparison of Neu5Acα(2-6) and α(2-3)Gal conjugated quantum dots (QDs) toxicity, biodistribution, and sequestration in wild-type zebrafish ( Danio rerio) and mouse model (C57BL). The fluorescent properties and cadmium composition of quantum dots were used to map the blood clearance, biodistribution, and sequestration of the sialylated QDs in major organs of both models. We observed that α(2-6) sialylated QDs preferentially have prolonged circulating half-life and broader biodistribution in both models. On the contrary, α(2-3) sialic acid and galactose-conjugated QDs have shortened blood circulation time and are sequestered in the liver, and cleared after several hours in both models. These results demonstrate the applicability of the zebrafish and sialylated QDs to target specific organs, as well as drug delivery and biomedical diagnostics.


Assuntos
Pontos Quânticos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Ácido N-Acetilneuramínico , Distribuição Tecidual , Peixe-Zebra
9.
ACS Nano ; 11(12): 11969-11977, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29077384

RESUMO

The constructs and study of combinatorial libraries of structurally defined homologous extracellular matrix (ECM) glycopeptides can significantly accelerate the identification of cell surface markers involved in a variety of physiological and pathological processes. Herein, we present a simple and reliable host-guest approach to design a high-throughput glyco-collagen library to modulate the primary and secondary cell line migration process. 4-Amidoadamantyl-substituted collagen peptides and ß-cyclodextrin appended with mono- or disaccharides were used to construct self-assembled glyco-collagen conjugates (GCCs), which were found to be thermally stable, with triple-helix structures and nanoneedles-like morphologies that altered cell migration processes. We also investigated the glycopeptide's mechanisms of action, which included interactions with integrins and cell signaling kinases. Finally, we report murine wound models to demonstrate the real-time application of GCCs. As a result of our observations, we claim that the host-guest model of ECM glycopeptides offers an effective tool to expedite identification of specific glycopeptides to manipulate cell morphogenesis, cell differentiation metastatic processes, and their biomedical applications.


Assuntos
Movimento Celular/efeitos dos fármacos , Colágeno/química , Glicopeptídeos/química , Modelos Biológicos , Cicatrização/efeitos dos fármacos , beta-Ciclodextrinas/química , Animais , Linhagem Celular Tumoral , Colágeno/metabolismo , Colágeno/farmacologia , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Glicopeptídeos/metabolismo , Glicopeptídeos/farmacologia , Células HeLa , Humanos , Camundongos , Estrutura Molecular , Células NIH 3T3 , Fenótipo , beta-Ciclodextrinas/metabolismo , beta-Ciclodextrinas/farmacologia
10.
ChemMedChem ; 12(14): 1116-1124, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28678436

RESUMO

To investigate the effects of the heterogeneity and shape of glyco-nanoprobes on carbohydrate-protein interactions (CPIs), α-d-mannose- and ß-d-galactose-linked homo- and heterogeneous glycodendrons were synthesized and immobilized on spherical and rod-shaped gold nanoparticles (AuNPs). Lectin and bacterial binding studies of these glyco-AuNPs clearly illustrate that multivalency and shape of AuNPs contribute significantly to CPIs than the heterogeneity of glycodendrons. Finally, bacterial infection of HeLa cells was effectively inhibited by the homogeneous glycodendron-conjugated rod-shaped AuNPs relative to their heterogeneous counterparts. Overall, these results provide insight into the role of AuNP shape and multivalency as potential factors to regulate CPIs.


Assuntos
Dendrímeros/química , Escherichia coli/efeitos dos fármacos , Galactose/química , Ouro/química , Manose/química , Nanopartículas Metálicas/química , Aderência Bacteriana/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dendrímeros/farmacologia , Escherichia coli/fisiologia , Células HeLa , Humanos , Tamanho da Partícula , Lectinas de Plantas/química , Propriedades de Superfície
11.
Sci Rep ; 7(1): 4239, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28652584

RESUMO

Glyconanotechnology offers a broad range of applications across basic and translation research. Despite the tremendous progress in glyco-nanomaterials, there is still a huge gap between the basic research and therapeutic applications of these molecules. It has been reported that complexity and the synthetic challenges in glycans synthesis, the cost of the high order in vivo models and large amount of sample consumptions limited the effort to translate the glyco-nanomaterials into clinical applications. In this regards, several promising simple animal models for preliminary, quick analysis of the nanomaterials activities has been proposed. Herein, we have studied a systematic evaluation of the toxicity, biodistribution of fluorescently tagged PEG and mannose-capped gold nanoparticles (AuNPs) of three different shapes (sphere, rod, and star) in the adult zebrafish model, which could accelerate and provide preliminary results for further experiments in the higher order animal system. ICP-MS analysis and confocal images of various zebrafish organs revealed that rod-AuNPs exhibited the fast uptake. While, star-AuNPs displayed prolong sequestration, demonstrating its potential therapeutic efficacy in drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos/efeitos adversos , Nanopartículas Metálicas/administração & dosagem , Polissacarídeos/administração & dosagem , Distribuição Tecidual/efeitos dos fármacos , Animais , Ouro/administração & dosagem , Ouro/química , Humanos , Manose/administração & dosagem , Manose/química , Nanopartículas Metálicas/química , Modelos Animais , Polissacarídeos/química , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...