Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Med Image Anal ; 89: 102926, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37595405

RESUMO

Large-scale data obtained from aggregation of already collected multi-site neuroimaging datasets has brought benefits such as higher statistical power, reliability, and robustness to the studies. Despite these promises from growth in sample size, substantial technical variability stemming from differences in scanner specifications exists in the aggregated data and could inadvertently bias any downstream analyses on it. Such a challenge calls for data normalization and/or harmonization frameworks, in addition to comprehensive criteria to estimate the scanner-related variability and evaluate the harmonization frameworks. In this study, we propose MISPEL (Multi-scanner Image harmonization via Structure Preserving Embedding Learning), a supervised multi-scanner harmonization method that is naturally extendable to more than two scanners. We also designed a set of criteria to investigate the scanner-related technical variability and evaluate the harmonization techniques. As an essential requirement of our criteria, we introduced a multi-scanner matched dataset of 3T T1 images across four scanners, which, to the best of our knowledge is one of the few datasets of this kind. We also investigated our evaluations using two popular segmentation frameworks: FSL and segmentation in statistical parametric mapping (SPM). Lastly, we compared MISPEL to popular methods of normalization and harmonization, namely White Stripe, RAVEL, and CALAMITI. MISPEL outperformed these methods and is promising for many other neuroimaging modalities.


Assuntos
Aprendizado Profundo , Humanos , Reprodutibilidade dos Testes , Neuroimagem , Pâncreas , Tamanho da Amostra
2.
IEEE Int Conf Comput Vis Workshops ; 2021: 3277-3286, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34909551

RESUMO

Combining datasets from multiple sites/scanners has been becoming increasingly more prevalent in modern neuroimaging studies. Despite numerous benefits from the growth in sample size, substantial technical variability associated with site/scanner-related effects exists which may inadvertently bias subsequent downstream analyses. Such a challenge calls for a data harmonization procedure which reduces the scanner effects and allows the scans to be combined for pooled analyses. In this work, we present MISPEL (Multi-scanner Image harmonization via Structure Preserving Embedding Learning), a multi-scanner harmonization framework. Unlike existing techniques, MISPEL does not assume a perfect coregistration across the scans, and the framework is naturally extendable to more than two scanners. Importantly, we incorporate our multi-scanner dataset where each subject is scanned on four different scanners. This unique paired dataset allows us to define and aim for an ideal harmonization (e.g., each subject with identical brain tissue volumes on all scanners). We extensively view scanner effects under varying metrics and demonstrate how MISPEL significantly improves them.

3.
Data (Basel) ; 1(3)2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28239609

RESUMO

Human microbiome data from genomic sequencing technologies is fast accumulating, giving us insights into bacterial taxa that contribute to health and disease. The predictive modeling of such microbiota count data for the classification of human infection from parasitic worms, such as helminths, can help in the detection and management across global populations. Real-world datasets of microbiome experiments are typically sparse, containing hundreds of measurements for bacterial species, of which only a few are detected in the bio-specimens that are analyzed. This feature of microbiome data produces the challenge of needing more observations for accurate predictive modeling and has been dealt with previously, using different methods of feature reduction. To our knowledge, integrative methods, such as transfer learning, have not yet been explored in the microbiome domain as a way to deal with data sparsity by incorporating knowledge of different but related datasets. One way of incorporating this knowledge is by using a meaningful mapping among features of these datasets. In this paper, we claim that this mapping would exist among members of each individual cluster, grouped based on phylogenetic dependency among taxa and their association to the phenotype. We validate our claim by showing that models incorporating associations in such a grouped feature space result in no performance deterioration for the given classification task. In this paper, we test our hypothesis by using classification models that detect helminth infection in microbiota of human fecal samples obtained from Indonesia and Liberia countries. In our experiments, we first learn binary classifiers for helminth infection detection by using Naive Bayes, Support Vector Machines, Multilayer Perceptrons, and Random Forest methods. In the next step, we add taxonomic modeling by using the SMART-scan module to group the data, and learn classifiers using the same four methods, to test the validity of the achieved groupings. We observed a 6% to 23% and 7% to 26% performance improvement based on the Area Under the receiver operating characteristic (ROC) Curve (AUC) and Balanced Accuracy (Bacc) measures, respectively, over 10 runs of 10-fold cross-validation. These results show that using phylogenetic dependency for grouping our microbiota data actually results in a noticeable improvement in classification performance for helminth infection detection. These promising results from this feasibility study demonstrate that methods such as SMART-scan can be utilized in the future for knowledge transfer from different but related microbiome datasets by phylogenetically-related functional mapping, to enable novel integrative biomarker discovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...